Advertisement
Fuel Cells
Subscribe to Fuel Cells

The Lead

Graphene membrane could lead to better fuel cells, water filters

March 17, 2015 12:32 pm | by Walt Miss, Penn State Univ. | Videos | Comments

An atomically thin membrane with microscopically small holes may prove to be the basis for future hydrogen fuel cells, water filtering and desalination membranes, according to a group of 15 theorists and experimentalists. The team tested the possibility of using graphene as a separation membrane in water and found that naturally occurring defects allowed hydrogen protons to cross the barrier at unprecedented speeds.

Tesla denies reports about gigafactory construction delay

March 10, 2015 1:45 pm | by The Associated Press | News | Comments

Electric-car maker Tesla Motors is denying reports that construction has been delayed on its...

Cheap Lamp Key to Energy Storage

March 9, 2015 8:00 am | by Univ. of British Columbia | Videos | Comments

Researchers wanted to find a better way to make coatings that can be painted onto surfaces to...

Analysis shows ion slowdown in fuel cell material

March 2, 2015 11:01 am | by David L. Chandler, MIT News Office | News | Comments

Dislocations in oxides such as cerium dioxide, a solid electrolyte for fuel cells, turn out to...

View Sample

FREE Email Newsletter

Aerogel catalyst shows promise for fuel cells

March 2, 2015 7:54 am | by Mike Williams, Rice Univ. | News | Comments

Graphene nanoribbons formed into a 3-D aerogel and enhanced with boron and nitrogen are excellent catalysts for fuel cells, even in comparison to platinum, according to Rice Univ. researchers. A team led by materials scientist Pulickel Ajayan and chemist James Tour made metal-free aerogels from graphene nanoribbons and various levels of boron and nitrogen to test their electrochemical properties.

Direct measurement of key molecule will increase accuracy of combustion models

February 6, 2015 7:50 am | by Patti Koning, Sandia National Laboratories | News | Comments

Sandia National Laboratories researchers are the first to directly measure hydroperoxyalkyl radicals, a class of reactive molecules denoted as “QOOH”, that are key in the chain of reactions that controls the early stages of combustion. This breakthrough has generated data on QOOH reaction rates and outcomes that will improve the fidelity of models used by engine manufacturers to create cleaner and more efficient cars and trucks.

New concept of fuel cell for efficiency, environment

January 5, 2015 11:35 am | by Institute for Basic Science | News | Comments

The Center for Nanoparticle Research at the Institute for Basic Science has succeeded in proposing a new method to enhance fuel cell efficiency with the simultaneous removal of toxic heavy metal ions. The direct methanol fuel cell (DFMC) has been a promising energy conversion device for electrical vehicles and portable devices. However, the inevitable carbon monoxide (CO) poisoning is one of the main factors reducing its performance.

Advertisement

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

Could hydrogen vehicles take over as the “green” car of choice?

November 20, 2014 7:59 am | by American Chemical Society | News | Comments

Now that car makers have demonstrated through hybrid vehicle success that consumers want less-polluting tailpipes, they are shifting even greener. In 2015, Toyota will roll out the first hydrogen fuel-cell car for personal use that emits only water. An article in Chemical & Engineering Newsexplains how hydrogen could supplant hybrid and electric car technology.

Jet-fueled electricity at room temperature

November 5, 2014 7:41 am | by Aditi Risbud, Univ. of Utah Collee of Engineering | News | Comments

Univ. of Utah engineers developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without needing to ignite the fuel. These new fuel cells can be used to power portable electronics, off-grid power and sensors. A study of the new cells appears online in ACS Catalysis.

Researchers take big data approach to estimate range of electric vehicles

October 21, 2014 10:58 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed new software that estimates how much farther electric vehicles can drive before needing to recharge. The new technique requires drivers to plug in their destination and automatically pulls in data on a host of variables to predict energy use for the vehicle.

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven

October 14, 2014 12:09 pm | by Ingrid Söderbergh, Umea Univ. | News | Comments

Swedish and Chinese researchers have recently shown how a unique nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles creates a new type of catalysts for highly efficient oxygen reduction, the most important reaction in hydrogen fuel cells. Their results are published in the scientific journal Nature Communications.

Advertisement

Platinum meets its match in quantum dots from coal

October 1, 2014 8:31 am | by Mike Williams, Rice Univ. | News | Comments

Graphene quantum dots created at Rice Univ. grab onto graphene platelets like barnacles attach themselves to the hull of a boat. But these dots enhance the properties of the mothership, making them better than platinum catalysts for certain reactions within fuel cells.

Angling chromium to let oxygen through

September 10, 2014 6:03 pm | by Mary Beckman, PNNL | News | Comments

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. In a serendipitous finding at Pacific Northwest National Laboratory, researchers have created a new form of strontium-chromium oxide that performs as a semiconductor and also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell.

Scientists learn to control reactions with rare-earth catalyst

August 28, 2014 9:06 am | by Dawn Levy, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have discovered they can control chemical reactions in a new way by creating different shapes of cerium oxide, a rare-earth-based catalyst. Their finding holds potential for refining fuels, decreasing vehicle emissions, producing commodity chemicals and advancing fuel cells and chemical sensors.

Solar fuels as generated by nature

August 25, 2014 7:39 am | News | Comments

A research team investigating an important cofactor in photosynthesis, a manganese-calcium complex which uses solar energy to split water into molecular oxygen, have determined the exact structure of this complex at a crucial stage in the chemical reaction. The new insights into how molecular oxygen is formed at this metal complex may provide a blueprint for synthetic systems that could store sunlight energy in chemical energy carriers.

Why the hydrogen fuel cell vehicle rollout may now succeed

August 18, 2014 10:42 am | by Kat Kerlin, UC Davis News Service | News | Comments

A convergence of factors is propelling a market rollout of the hydrogen fuel cell vehicle, according to a new study. A key to hydrogen’s potential success is a new smart solution that clusters hydrogen fuel infrastructure in urban or regional networks, limiting initial costs and enabling an early market for the technology before committing to a full national deployment.

Advertisement

Turning methane into usable liquid fuel

August 5, 2014 8:48 am | by Louise Lerner, Argonne National Laboratory | News | Comments

Researchers from Argonne National Laboratory and the Illinois Institute of Technology were awarded $2 million over the course of two years to fund studies on hybrid fuel cells from the Advanced Research Projects Agency – Energy. The research seeks to create a fuel cell that would both produce electricity and convert methane gas to ethane or ethylene that could then be converted to a liquid fuel or valuable chemicals.

Engineering a more efficient fuel cell

July 9, 2014 10:38 am | by Glen Martin, Stanford New Service | News | Comments

Using high-brilliance x-rays, Stanford Univ. researchers track the process that fuel cells use to produce electricity, knowledge that will help make large-scale alternative energy power systems more practical and reliable. Fuel cells use oxygen and hydrogen as fuel to create electricity; if the process were run in reverse, the fuel cells could be used to store electricity, as well.  

Solar panels light the way from carbon dioxide to fuel

July 2, 2014 9:40 am | by Tien Nguyen, Princeton Univ. | News | Comments

Researchers at Princeton Univ. joined with experts at Liquid Light Inc. to devise an efficient method for harnessing sunlight to convert carbon dioxide into a potential alternative fuel known as formic acid. This type of acid is already being explored as an alternative in fuel cells. The new process takes place inside an electrochemical cell, which consists of metal plates the size of lunch-boxes that enclose liquid-carrying channels.

ARPA-E award recipient advancing solid oxide fuel cells

June 30, 2014 9:27 am | News | Comments

SiEnergy Systems, an Allied Minds company commercializing low temperature thin film solid oxide fuel cell (SOFC) technology from Harvard University, has announced that it has been selected for $2.65 million in funding from Advanced Research Projects Agency-Energy (ARPA-E). SiEnergy has develop innovative and unique hybrid electrochemical system that performs as both fuel cell and battery.

Researchers develop fuel cells for increased airplane efficiency

June 16, 2014 1:52 pm | by Tina Hilding, College of Engineering and Architecture | News | Comments

Washington State Univ. researchers have developed the first fuel cell that can directly convert fuels, such as jet fuel or gasoline, to electricity, providing a dramatically more energy-efficient way to create electric power for planes or cars. About 10 years ago, the researchers began developing a solid-oxide fuel cell to provide electrical power on commercial airplanes.

A fuel cell for the home

June 3, 2014 6:58 am | News | Comments

Researchers in Europe have designed a new type of fuel cell that is much simpler and can be mounted on a wall and used in a home. Designed with heater manufacturer Vaillant, the compact and safe system is based on solid fuel cell technology and generates electricity and heat from natural gas. With an output of 1 kW, it provides the average current consumption for a four-person household.

Scale model World War II craft takes flight with fuel from the sea

April 7, 2014 6:06 pm | News | Comments

Navy researchers have recently demonstrated sustained flight of a radio-controlled P-51 fighter replica fueled by a new gas-to-liquid process that uses seawater as carbon feedstock. The fuel is made using an innovative and proprietary electrolytic cation exchange module that separates gases from water at 92% efficiency. Catalysis converts the gases to liquid hydrocarbons.

Tiny power generator runs on saliva

April 3, 2014 1:02 pm | News | Comments

Saliva-powered micro-sized microbial fuel cells can produce minute amounts of energy sufficient to run on-chip applications, according to an international team of engineers.                      

How electrodes charge and discharge

April 3, 2014 9:17 am | by David L. Chandler, MIT | News | Comments

The electrochemical reactions inside the porous electrodes of batteries and fuel cells have been described by theorists, but never measured directly. Now, a team at MIT has figured out a way to measure the fundamental charge transfer rate — finding some significant surprises.

Solar-induced hybrid fuel cell produces electricity directly from biomass

February 19, 2014 7:45 am | by John Toon, Georgia Institute of Technology | News | Comments

Although low-temperature fuel cells powered by methanol or hydrogen have been well studied, existing low-temperature fuel cell technologies can’t directly use biomass as a fuel because of the lack of an effective catalyst system for polymeric materials. Now, researchers have developed a new type of low-temperature fuel cell that directly converts biomass to electricity with assistance from a catalyst activated by solar or thermal energy.

Industry Breakout - Energy

December 9, 2013 6:04 am | by R&D Magazine/Battelle | Articles | Comments

The energy industry includes a broad array of companies, ranging from multinational oil and gas firms to large and small technology firms. Reducing costs of production is a large driver of R&D in the energy space, and materials development and advanced materials integration are increasingly important in shaping the industry’s R&D investment.

Bioelectrochemical systems: Electricity generators of the future?

October 28, 2013 7:58 am | News | Comments

Billions of euros are spent treating trillions of liters of wastewater every year, consuming substantial amounts of energy. However, this wastewater could act as a renewable resource, saving significant quantities of energy and money, as it contains organic pollutants which can be used to produce electricity, hydrogen and high-value chemicals, such as caustic soda.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading