Advertisement
Biofuels
Subscribe to Biofuels

The Lead

Researchers identify materials to improve biofuel, petroleum processing

January 26, 2015 10:57 am | by Univ. of Minnesota | News | Comments

Using one of the largest supercomputers in the world, a team of researchers led by the Univ. of Minnesota has identified potential materials that could improve the production of ethanol and petroleum products. The discovery could lead to major efficiencies and cost savings in these industries. The Univ. of Minnesota has two patents pending on the research and hopes to license these technologies.

Model analyzes water footprint of biofuels

January 15, 2015 12:03 pm | by Greg Cunningham, Argonne National Laboratory | News | Comments

A new version of an online tool created by Argonne National Laboratory will help biofuels...

Plant genetic advance could lead to more efficient biofuel conversion

January 5, 2015 7:14 am | by Janet Lathrop, Univ. of Massachusetts, Amherst | News | Comments

Plant geneticists from the Univ. of Massachusetts Amherst and the Univ. of California, Davis...

Speeding cyanobacteria growth “brightens” biofuel’s future

January 2, 2015 9:27 am | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

Rapidly growing bacteria that live in the ocean and can manufacture their own food hold promise...

View Sample

FREE Email Newsletter

New conversion process turns biomass “waste” into lucrative chemical products

December 17, 2014 2:58 pm | by Elizabeth K. Gardner, Purdue Univ. | Videos | Comments

A new catalytic process is able to convert what was once considered biomass waste into lucrative chemical products that can be used in fragrances, flavorings or to create high-octane fuel. A team of researchers from Purdue Univ.'s Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a chemical catalyst and heat to spur reactions that convert lignin into valuable chemical commodities.

Researchers to use algae to clean up mine water

December 5, 2014 10:04 am | by Univ. of Bristol | News | Comments

A groundbreaking research project by the GW4 Alliance aims to clean up water from a Cornish tin mine, using algae to harvest the precious heavy metals and produce biofuel at the same time. GW4 brings together the South West and Wales’ four leading, research-intensive universities: Bath, Bristol, Cardiff and Exeter.

Sweet smell of success

December 2, 2014 8:37 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Two years ago, researchers at the Joint BioEnergy Institute engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel. Now, after further genetic modifications, they have managed to dramatically boost the E.coli’s methyl ketone production 160-fold.

Advertisement

Model evaluates where bioenergy crops grow best

November 24, 2014 7:59 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Farmers interested in bioenergy crops now have a resource to help them determine which kind of bioenergy crop would grow best in their regions and what kind of harvest to expect. Researchers at the Univ. of Illinois have published a study identifying yield zones for three major bioenergy crops.

New method for methanol processing could reduce carbon dioxide emissions

November 17, 2014 8:33 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

Researchers at the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science have developed a more efficient way to turn methanol into useful chemicals, such as liquid fuels, and that would also reduce carbon dioxide emissions. Methanol, which is a product of natural gas, is well-known as a common “feedstock” chemical.

Versatile process efficiently converts biomass to liquid fuel

November 12, 2014 8:05 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have demonstrated a new process to convert all biomass into liquid fuel, and the method could make possible mobile processing plants. The researchers at Purdue Univ. filed a patent application on the concept in 2008 and have now demonstrated that it works in laboratory experiments.

Process transforms wood, crop waste into valuable chemicals

November 3, 2014 10:13 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

Scientists disclosed a new method to convert lignin, a biomass waste product, into simple chemicals. The innovation is an important step toward replacing petroleum-based fuels and chemicals with biorenewable materials. Lignin is the substance that makes trees and cornstalks sturdy, and it accounts for nearly 30% of the organic carbon in the biosphere.

Boosting biogasoline production in microbes

October 28, 2014 8:53 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the on-going effort to develop advanced biofuels as a clean, green and sustainable source of liquid transportation fuels, researchers at the U.S. Dept. of Energy’s Joint BioEnergy Institute have identified microbial genes that can improve both the tolerance and the production of biogasoline in engineered strains of Escherichia coli.

Advertisement

New catalyst could improve biofuels production

October 17, 2014 9:36 am | by Tina Hilding, Voiland College of Engineering & Architecture | News | Comments

Washington State Univ. (WSU) researchers have developed a new catalyst that could lead to making biofuels cheaply and more efficiently. The WSU researchers developed a mixture of two metals, iron along with a tiny amount of palladium, to serve as a catalyst to efficiently and cheaply remove oxygen.

Discovery of cellular snooze button advances cancer and biofuel research

October 14, 2014 12:53 pm | by Michigan State Univ. Media Communications | News | Comments

The discovery of a cellular snooze button has allowed a team of Michigan State Univ. scientists to potentially improve biofuel production and offer insight on the early stages of cancer. The discovery finds the protein CHT7 is a likely repressor of cellular quiescence, or resting state. This cellular switch, which influences algae’s growth and oil production, also wields control of cellular growth—and tumor growth—in humans.

How LIMS is Essential in the Biofuels Industry

September 25, 2014 10:26 am | by Colin Thurston, Director of Product Strategy, Thermo Fisher Scientific | Thermo Fisher Scientific | Articles | Comments

As U.S. energy imports dramatically drop it would appear that renewables investment is in jeopardy, including the biofuels market. There’s some evidence to support this; but if declining or stalled investment is predicated on the limited potential of existing technology, much of which still relies on biomass, the biofuels industry may, in fact, be undergoing a natural transition instead of a decline.

Building the framework for the future of biofuels

September 25, 2014 9:47 am | by Joe Kullman, Arizona State Univ. | News | Comments

For more than five years, Amy Landis, an engineering professor at Arizona State Univ.,  has led research that is revealing the potential rewards of developing large-scale biofuels production, as well as the potential drawbacks we would face in the effort. According to Landis, lands damaged by industrial waste or other pollutants could be restored sufficiently to support agriculture for growing bioenergy crops.

Search for better biofuels microbes leads to the human gut

September 25, 2014 8:14 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Scientists have scoured cow rumens and termite guts for microbes that can efficiently break down plant cell walls for the production of next-generation biofuels, but some of the best microbial candidates actually may reside in the human lower intestine, researchers report. Their studyis the first to use biochemical approaches to confirm the hypothesis that microbes in the human gut can digest fiber.

Advertisement

Termites evolved complex bioreactors 30 million years ago

September 23, 2014 9:36 am | News | Comments

Achieving complete breakdown of plant biomass for energy conversion in industrialized bioreactors remains a complex challenge, but new research shows that termite fungus farmers solved this problem more than 30 million years ago. The new insight reveals that the great success of termite farmers as plant decomposers is due to division of labor.

Going to extremes for enzymes

September 2, 2014 8:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the age-old nature versus nurture debate, Douglas Clark, a faculty scientist with Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley, is not taking sides. In the search for enzymes that can break lignocellulose down into biofuel sugars under the extreme conditions of a refinery, he has prospected for extremophilic microbes and engineered his own cellulases.

Process helps overcome obstacles to produce renewable fuels, chemicals

August 26, 2014 7:44 am | by National Renewable Energy Laboratory | News | Comments

There’s an old saying in the biofuels industry: “You can make anything from lignin except money.” But now, a new study may pave the way to challenging that adage. The study from the National Renewable Energy Laboratory demonstrates a concept that provides opportunities for the successful conversion of lignin into a variety of renewable fuels, chemicals, and materials for a sustainable energy economy.

Water leads to chemical that gunks up biofuels production

August 21, 2014 7:53 am | by Mary Beckman, Pacific Northwest National Laboratory | Videos | Comments

Trying to understand the chemistry that turns plant material into the same energy-rich gasoline and diesel we put in our vehicles, researchers have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. The study, which was reported online at the Journal of the American Chemical Society, can help improve processes that produce biofuels from plants.

Bionic liquids from lignin

August 19, 2014 7:44 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon—bionic liquids. Researchers at the Joint BioEnergy Institute have developed “bionic liquids” from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

August 12, 2014 12:34 pm | News | Comments

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. A team has figured out how to make electrodes from certain hemp fibers, and the breakthrough came from figuring out how to process them.

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

New assay tool characterizes plant sugar transporters

July 28, 2014 4:54 pm | News | Comments

A powerful new tool that could help advance the genetic engineering of “fuel” crops bioenergy, has been developed by researchers with the Joint BioEnergy Institute. Their new, unique assay enabled them to analyze nucleotide sugar transporter activities in Arabidopsis, a promising source of plant biomass, and characterize a family of six nucleotide sugar transporters that has never before been described.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Water-cleanup catalysts tackle biomass upgrading

June 26, 2014 12:33 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. chemical engineer Michael Wong has spent a decade amassing evidence that palladium-gold nanoparticles are excellent catalysts for cleaning polluted water, but even he was surprised at how well the particles converted biodiesel waste into valuable chemicals.

A win-win-win solution: Biofuel, climate and biodiversity

June 25, 2014 10:44 pm | News | Comments

Fossil fuel emissions release billions of tons of carbon into the atmosphere each year. In Brazil, the demand for alternative energy sources has led to an increase in biofuel crops. New research demonstrates the high carbon costs of converting intact Brazilian savanna compared to the carbon gains obtained from converting underutilized pastureland for biofuel crops.

A new resource for advanced biofuels research

June 25, 2014 8:21 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers at the Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls. The idea behind “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading