Advertisement
Batteries & Energy Storage
Subscribe to Batteries & Energy Storage

The Lead

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald...

Team aims to improve plant-based battery with neutrons, simulation

September 18, 2014 8:02 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant...

View Sample

FREE Email Newsletter

First water-based nuclear battery can be used to generate electrical energy

September 16, 2014 6:51 pm | News | Comments

Betavoltaics, a battery technology that generates power from radiation, has been studied as an energy source since the 1950s. Now, for the first time using a water-based solution, researchers at the Univ. of Missouri have created a long-lasting and more efficient nuclear battery that could be used for many applications such as a reliable energy source in automobiles and also in complicated applications such as space flight.

Study sheds new light on why batteries go bad

September 15, 2014 7:34 am | by Andrew Gordon, SLAC National Accelerator Laboratory | Videos | Comments

A comprehensive look at how tiny particles in a lithium-ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought—and that the benefits of slow draining and charging may have been overestimated.

Engineers describe key mechanism in energy and information storage

September 12, 2014 8:48 am | by Bjorn Carey, Stanford News Service | News | Comments

The ideal energy or information storage system is one that can charge and discharge quickly, has a high capacity and can last forever. Nanomaterials are promising to achieve these criteria, but scientists are just beginning to understand their challenging mechanisms. Now, a team from Stanford Univ. has provided new insight into the storage mechanism of nanomaterials that could facilitate development of improved batteries and memory devices.

Advertisement

Tesla selects Nevada for battery plant

September 4, 2014 8:55 am | by Justin Pritchard and Scott Sonner, Associated Press | News | Comments

Coming to Nevada's high desert: A massive, $5 billion factory that will pump out high-tech batteries for hundreds of thousands of electric vehicles. That's assuming state leaders deliver on the economic incentives they packaged to entice Tesla Motors to Nevada rather than four other states competing for the factory and the economic jolt it promises to bring.

Researchers observe the phenomenon of "lithium plating" during the charging process

September 3, 2014 8:55 am | News | Comments

When metallic lithium forms and deposits during the charging process in a lithium-ion battery, it can lead to a reduced battery lifespan and even short circuits. Using neutron beams, scientists have now peered into the inner workings of a functioning battery without destroying it. In the process, they have resolved this so-called lithium plating mystery.

Rubber meets the road with ORNL carbon, battery technologies

August 27, 2014 3:22 pm | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Recycled tires could see new life in lithium-ion batteries that provide power to plug-in electric vehicles and store energy produced by wind and solar, say researchers at Oak Ridge National Laboratory. By modifying the microstructural characteristics of carbon black, a substance recovered from discarded tires, a team of researchers is developing a better anode for lithium-ion batteries.

Scientists develop water splitter that runs on ordinary AAA battery

August 22, 2014 7:27 am | by Mark Shwartz, Stanford Univ. | Videos | Comments

In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming. Now scientists at Stanford Univ. have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis.

A Better Battery Choice

August 19, 2014 2:31 pm | Award Winners

As consumers we are ever more connected these days through tablets, smartphones, smart watches, and smart glasses, while the abundance of apps has made our lives more convenient and interesting. However, the battery in these electronics barely lasts a day. SolidEnergy SystemsSolid Polymer Ionic Liquid (SPiL) rechargeable lithium battery could potentially be the biggest breakthrough in battery technology since Sony introduced the first Li-ion battery in 1991.

Advertisement

An Electric Charge

August 19, 2014 1:39 pm | Award Winners

Arkansas Power Electronics International Inc.’s High-Performance Silicon Carbide-based Plug-In Hybrid Electric Vehicle Battery Charger is a Level 2 isolated on-board vehicular battery charger that utilizes silicon carbide (SiC) power devices for application in electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs).

Recycling old batteries into solar cells

August 18, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

This could be a classic win-win solution: A system proposed by researchers at Massachusetts Institute of Technology recycles materials from discarded car batteries—a potential source of lead pollution—into new, long-lasting solar panels that provide emissions-free power. The system is based on a recent development in solar cells that makes use of a compound called perovskite.

New material could be used for energy storage, conversion

August 13, 2014 11:50 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory researchers have made a material that is 10 times stronger and stiffer than traditional aerogels of the same density. This ultra-low-density, ultra-high surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

August 12, 2014 12:34 pm | News | Comments

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. A team has figured out how to make electrodes from certain hemp fibers, and the breakthrough came from figuring out how to process them.

“Wetting” a battery’s appetite for renewable energy storage

August 4, 2014 9:22 am | by Frances White, PNNL | Videos | Comments

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material could allow more utilities to store large amounts of renewable energy and make the nation's power system more reliable and resilient.

Advertisement

NASA to test making rocket fuel on Mars

August 4, 2014 8:16 am | News | Comments

Taking fuel to Mars for return flights is heavy and expensive. The $1.9 billion Mars 2020 rover that NASA announced on Friday will include an experiment that will turn carbon dioxide in the Martian atmosphere into oxygen. It could then be used to make rocket fuel and for future astronauts to breathe. The device, named MOXIE, will make about three-quarters of an ounce of oxygen an hour.

Method provides nanoscale details of electrochemical reactions in EV battery materials

August 4, 2014 7:33 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Using a new method to track the electrochemical reactions in a common electric vehicle battery material under operating conditions, scientists at Brookhaven National Laboratory have revealed new insight into why fast charging inhibits this material's performance. The study also provides the first direct experimental evidence to support a particular model of the electrochemical reaction. 

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

Panasonic, Tesla to build big U.S. battery plant

July 31, 2014 4:23 am | by The Associated Press | News | Comments

American electric car maker Tesla Motors Inc. is teaming up with Japanese electronics company Panasonic Corp. to build a battery manufacturing plant in the U.S. expected to create 6,500 jobs. The companies announced the deal Thursday, but they did not say where in the U.S. the so-called "gigafactory," or large-scale plant, will be built.

All-in-one energy system offers greener power for off-grid buildings

July 30, 2014 11:49 am | News | Comments

Developed in the U.K., an innovative “trigeneration” system fuelled entirely by raw plant oils could have great potential for isolated homes and businesses operating outside grid systems. the small-scale combined cooling, heat and power system has been designed to utilize its waste heating by storing it through measures such as batteries and supercapacitors.

Understanding the source of extra-large capacities in promising Li-ion battery electrodes

July 28, 2014 8:15 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Lithium (Li)-ion batteries power almost all of the portable electronic devices that we use every day, including smartphones, cameras, toys and even electric cars. Researchers across the globe are working to find materials that will lead to safe, cheap, long-lasting and powerful Li-ion batteries.

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

More pores for more power

June 30, 2014 2:10 pm | News | Comments

Researchers in Germany have produced a new material the size of a sugar cube that has a surface area equivalent to more than seven tennis courts. This novel type of nanofiber has a highly ordered and porous structure gives it an extraordinarily high surface-to-volume ratio and could be a key enabling technology for lithium-sulfur batteries.

Study shows greater potential for solar power

June 23, 2014 9:43 am | News | Comments

Concentrating solar power (CSP) could supply a large fraction of the power supply in a decarbonized energy system, according to a new study of the technology and its potential practical application. For this research, scientists simulated the construction and operation of CSP systems in four regions around the world, taking into account weather variations, plant locations, electricity demand, and costs.

Tesla handing over the keys to its technology

June 13, 2014 8:21 am | by Michael Liedtke and Dee-Ann Durbin, AP Business Writers | News | Comments

Tesla CEO Elon Musk promised Thursday to give away the company's entire patent portfolio to all comers, as long as they promised not to engage courtroom battles over intellectual property. The decision is meant to encourage other automakers to expand beyond gasoline-burning automobiles, and opens the door to more collaboration with Tesla, which is already making electric systems for Daimler and Toyota.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading