Advertisement
Batteries & Energy Storage
Subscribe to Batteries & Energy Storage

The Lead

Research aims to improve rechargeable batteries by focusing on graphene oxide paper

December 19, 2014 8:19 am | News | Comments

A Kansas State University engineering team has discovered some of graphene oxide's important properties that can improve sodium- and lithium-ion flexible batteries.
                               

Electron spin could be key to high-temperature superconductivity

December 18, 2014 3:00 pm | News | Comments

EPFL scientists take a significant step in our understanding of superconductivity by studying...

Neutron CT helps solve battery fire puzzle

December 12, 2014 10:43 am | by Daniel Hussey, NIST | News | Comments

Earlier this month, the NTSB released its...

New form of ice could explore avenues for energy production and storage

December 11, 2014 8:01 am | News | Comments

The discovery of a new form of ice could lead to an improved understanding of our planet’s...

View Sample

FREE Email Newsletter

Revving Up Energy Solutions Innovation

December 8, 2014 5:02 pm | by Lindsay Hock, Managing Editor | Articles | Comments

During the 2014 R&D 100 Awards event, R&D Magazine expanded the banquet to hold four technology panels during the day. The last panel of the day focused on energy/environmental solutions and the innovation behind four R&D 100-winning technologies and the complexity of bringing such technologies to the market.

Nanoparticle network could bring fast-charging batteries

December 4, 2014 7:46 am | by Emil Venere, Purdue Univ. | News | Comments

A new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite.

Low-grade waste heat regenerates ammonia battery

December 3, 2014 3:49 pm | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

An efficient method to harvest low-grade waste heat as electricity may be possible using reversible ammonia batteries, according to Penn State Univ. engineers. Low-grade waste heat is an artifact of many energy-generating methods. In automobiles, waste heat generated in winter is diverted to run the vehicle heating system, but in the summer, that same waste heat must be dissipated to the environment.

Advertisement

Atmospheric carbon dioxide used for energy storage products

December 2, 2014 4:28 pm | by David Stauth, Oregon State Univ. | News | Comments

Chemists and engineers at Oregon State Univ. have discovered a fascinating new way to take some of the atmospheric carbon dioxide that’s causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products. This innovation in nanotechnology won’t soak up enough carbon to solve global warming, but it will provide a low-cost way to make nanoporous graphene for use in supercapacitors.

Lengthening the life of high-capacity silicon electrodes in rechargeable lithium batteries

December 2, 2014 4:14 pm | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

A new study will help researchers create longer-lasting, higher-capacity lithium rechargeable batteries, which are commonly used in consumer electronics. In a study published in ACS Nano, researchers showed how a coating that makes high-capacity silicon electrodes more durable could lead to a replacement for lower-capacity graphite electrodes.

NTSB points to battery defect in Boeing 787 fire

December 1, 2014 3:01 pm | by By Joan Lowy - Associated Press - Associated Press | News | Comments

A short circuit likely due to a manufacturing defect in a Boeing 787 airliner battery caused a fire last year that grounded the planes for more than three months, federal accident investigators said Monday. They also faulted the plane's maker and the Federal Aviation Administration for designing and approving a battery design that didn't protect against such a failure.

Advancements in battery technology shaping the future of electronic vehicles

November 21, 2014 9:57 am | by Canadian Light Source | News | Comments

Scientists at the Canadian Light Source are on the forefront of battery technology using cheaper materials with higher energy and better recharging rates that make them ideal for electric vehicles (EVs). The switch from conventional internal combustion engines to EVs is well underway. However, limited mileage of current EVs due to the confined energy storage capability of available battery systems is why these vehicles aren't more common.

A billion holes can make a battery

November 11, 2014 9:19 am | by Martha Heil, Univ. of Maryland | Videos | Comments

Researchers at the Univ. of Maryland have invented a single tiny structure that includes all the components of a battery that they say could bring about the ultimate miniaturization of energy storage components. The structure is called a nanopore: a tiny hole in a ceramic sheet that holds electrolyte to carry the electrical charge between nanotube electrodes at either end.

Advertisement

How to make mobile batteries last longer

November 7, 2014 9:42 am | by Univ. of Luxembourg | News | Comments

Electronic devices waste a lot of energy by producing useless heat. Researchers have made a leap forward in understanding how this happens and how this waste could be reduced by controlling energy flows at a molecular level.        

Novel sodium-conducting material could improve rechargeable batteries

November 5, 2014 9:23 am | by NIST | News | Comments

Rechargeable battery manufacturers may get a jolt from research performed at NIST and several other institutions, where a team of scientists has discovered a safe, inexpensive, sodium-conducting material that significantly outperforms all others in its class. The team's discovery is a sodium-based, complex metal hydride, a material with potential as a cheaper alternative to the lithium-based conductors used in many rechargeable batteries.

Microgrid could standardize small, self-sustaining electric grids

November 4, 2014 2:56 pm | by Katie Elyce Jones, Oak Ridge National Laboratory | News | Comments

When Oak Ridge National Laboratory researcher Yan Xu talks about “islanding,” or isolating, from the grid, she’s discussing a fundamental benefit of microgrids—small systems powered by renewables and energy storage devices. The benefit is that microgrids can disconnect from larger utility grids and continue to provide power locally.

New way to make batteries safer

November 3, 2014 4:51 pm | by Anne Trafton, MIT News Office | News | Comments

Every year, nearly 4,000 children go to emergency rooms after swallowing button batteries, the flat, round batteries that power toys, hearing aids, calculators and many other devices. Ingesting these batteries has severe consequences, including burns that permanently damage the esophagus, tears in the digestive tract and, in some cases, even death.

Chemists gain edge in next-gen energy

November 3, 2014 1:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide. The Rice laboratory of chemist James Tour has turned molybdenum disulfide’s 2-D form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

Advertisement

Electric-car drivers trading gas for solar power

October 28, 2014 5:33 pm | by Dee-Ann Durbin, AP Auto Writer | News | Comments

Owners of electric vehicles have already gone gas-free. Now, a growing number are powering their cars with sunlight. Solar panels installed on the roof of a home or garage can easily generate enough electricity to power an electric or plug-in gas-electric hybrid vehicle. The approach is not cheap, but advocates say the investment pays off over time and is worth it for the thrill of fossil fuel-free driving.

Physicists find toxic halogens in Li-ion batteries

October 24, 2014 12:08 pm | by Brian McNeill, Virginia Commonwealth Univ. | News | Comments

Researchers at Virginia Commonwealth Univ. have discovered that most of the electrolytes used in lithium-ion batteries are superhalogens, and that the vast majority of these electrolytes contain toxic halogens. At the same time, the researchers also found that the electrolytes in lithium-ion batteries could be replaced with halogen-free electrolytes that are both nontoxic and environmentally friendly.

Evaluating powerful batteries for modular grid energy storage

October 24, 2014 8:31 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

Sandia National Laboratories has begun laboratory-based characterization of TransPower’s GridSaver, the largest grid energy storage system analyzed at Sandia’s Energy Storage Test Pad in Albuquerque. Sandia will evaluate the 1 MW, lithium-ion grid energy storage system for capacity, power, safety and reliability. The laboratory also will investigate the system’s frequency regulation.

Garnet ceramics ideal for high-energy lithium batteries

October 22, 2014 8:06 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The team used electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Energy storage of the future

October 20, 2014 7:55 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world. Lawrence Livermore National Laboratory researchers have turned to graphene aerogel for enhanced electrical energy storage that eventually could be used to smooth out power fluctuations in the energy grid.

Dispelling a misconception about Mg-ion batteries

October 17, 2014 8:01 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lithium-ion batteries are popular, but have limitations in energy density, lifetime and safety. One alternative is Mg-ion batteries. Researchers at Lawrence Berkeley National Laboratory ran a series of computer simulations that suggest that performance bottlenecks experienced with Mg-ion batteries to date may not be so much related to the electrolyte itself, but to what happens at the interface between the electrolyte and electrodes.

Ultra-fast charging batteries last 20 years, charge to 70% in 2 min

October 13, 2014 9:02 am | News | Comments

Scientists at Nanyang Technology University (NTU) in Singapore have developed a new type of lithium-ion battery in which the traditional graphite used for the anode has been replaced with a new gel material made from titanium dioxide. The new design allows the battery to endure more than 10,000 cycles, vs. about 500 recharge cycles for typical rechargeable lithium-ion batteries.

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

Stressed out: Research sheds new light on why rechargeable batteries fail

October 2, 2014 8:18 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Drawn relentlessly by their electrical charges, lithium ions in a battery surge from anode to cathode and back again. Yet, no one really understands what goes on at the atomic scale as lithium ion batteries are used and recharged. Using transmission electron microscopy, researchers are now glimpsing what can happen to anodes as lithium ions work their way into them. The “atomic shuffling” these ions perform leads to rapid anode failure.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

Team aims to improve plant-based battery with neutrons, simulation

September 18, 2014 8:02 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant polymer known as lignin, he noticed something unusual. The material’s microstructure—a mixture of perfectly spherical nanoscale crystallites distributed within a fibrous matrix—looked almost too good to be true.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading