Batteries & Energy Storage
Subscribe to Batteries & Energy Storage
View Sample

FREE Email Newsletter

Team develops high-performance flexible solid-state battery

August 6, 2012 9:34 am | News | Comments

Using a universal transfer approach, a team of engineers in Korea have built a flexible lithium-ion battery structured with high density inorganic thin films. The innovation has potential as an essential energy source for flexible displays.

DOE grant goes to lithium-ion battery development

August 6, 2012 5:43 am | News | Comments

Washington University in St. Louis recently landed a $2 million U.S. Dept. of Energy grant with $1.2 million in matching funds from the university to design a battery management system for lithium-ion batteries that will guarantee their longevity, safety and performance. The development is geared toward electric vehicle technologies.

New battery helps breaks barriers for low-cost energy storage

August 2, 2012 5:25 am | News | Comments

A research team has built an air-breathing battery that uses the chemical energy generated by the oxidation of iron plates that are exposed to the oxygen in the air—a process similar to rusting. The concept has been around for decades, but competing chemical reaction of hydrogen generation sucked away about 50% of the battery’s energy. Recent breakthroughs have lowered this loss to just 4%.


New ultracapacitor delivers a jolt of energy at a constant voltage

July 19, 2012 9:01 am | News | Comments

Ultracapacitors can be recharged hundreds of thousands of times without degrading, but its voltage output drops precipitously as the device is discharged. A new type of capacitor has been designed by a University of West Florida researcher that maintains a near steady voltage as it is discharged. The key is the level of exposure it has to the electrolyte solution.

Scientists use X-ray imaging to observe running batteries in action

July 18, 2012 6:25 am | News | Comments

Using high-power X-ray imaging of an actual working battery, a Stanford University-SLAC National Accelerator Laboratory team discovered that sulfur particles in the cathode largely remain intact during discharge. Their results could help scientists find new way to develop commercially viable lithium-sulfur batteries for electric vehicles.

Toughened silicon sponges may make tenacious batteries

July 17, 2012 3:36 am | News | Comments

Researchers at Rice University and Lockheed Martin reported this month that they've found a way to make multiple high-performance anodes from a single silicon wafer. The process uses simple silicon to replace graphite as an element in rechargeable lithium-ion batteries, laying the groundwork for longer-lasting, more powerful batteries for such applications as commercial electronics and electric vehicles.

Engineers develop new technology for grid-level energy storage

July 11, 2012 10:26 am | News | Comments

A team of researchers from Drexel University has pioneered a new method for quickly and efficiently storing large amounts of electrical energy. Their solution is an electrochemical flow capacitor, which combines the strengths of batteries and supercapacitors while also negating the scalability problem.

Fuel cell keeps going after hydrogen runs out

July 2, 2012 7:02 am | by Caroline Perry | News | Comments

Imagine a kerosene lamp that continued to shine after the fuel was spent. Materials scientists at Harvard University have demonstrated an equivalent feat in clean energy generation with a solid-oxide fuel cell that converts hydrogen into electricity but can also store electrochemical energy like a battery. This fuel cell can continue to produce power for a short time after its fuel has run out.


Researchers develop paintable battery

June 28, 2012 6:04 am | News | Comments

Researchers at Rice University have developed a lithium-ion battery that can be painted on virtually any surface. The rechargeable battery created in the laboratory of Rice materials scientist Pulickel Ajayan consists of spray-painted layers, each representing the components in a traditional battery.

Lithium-ion battery strategy offers more energy, longer lifecycle

June 28, 2012 4:26 am | News | Comments

Lithium-ion batteries drive devices from electric cars to smartphones. And society is demanding more batteries with more capacity from each battery. To help meet this demand, Pacific Northwest National Laboratory's Environmental Molecular Science Laboratory users and researchers put their energy behind a clever new idea that, literally, gives batteries a bit of room to grow.

ORNL home to new battery manufacturing R & D facility

June 26, 2012 9:04 am | News | Comments

Future automotive batteries could cost less and pack more power because of a new manufacturing research and development facility at Oak Ridge National Laboratory. The $3 million Department of Energy facility allows for collaboration with industry and other national labs while protecting intellectual property of industrial partners.

Scientists spark new interest in the century-old Edison battery

June 26, 2012 8:57 am | News | Comments

Stanford University scientists have breathed new life into the nickel-iron battery, a rechargeable technology developed by Thomas Edison more than a century ago. The team has created an ultrafast nickel-iron battery that can be fully charged in about 2 min and discharge in less than 30 sec.

Ionic liquid improves speed, efficiency of hydrogen-producing catalyst

June 18, 2012 3:49 am | News | Comments

The design of a nature-inspired material that can make energy-storing hydrogen gas has gone holistic. Usually, tweaking the design of this particular catalyst—a work in progress for cheaper, better fuel cells—results in either faster or more energy-efficient production but not both. Now, researchers have found a condition that creates hydrogen faster without a loss in efficiency.


Potential carbon capture role for new carbon dioxide-absorbing material

June 12, 2012 4:03 am | News | Comments

A novel porous material that has unique carbon dioxide retention properties has been developed through research led by The University of Nottingham. The findings form part of ongoing efforts to develop new materials for gas storage applications could have an impact in the advancement of new carbon capture products for reducing emissions from fossil fuel processes.

'Nanocable' could be big boon for energy storage

June 7, 2012 11:43 am | News | Comments

Thanks to a little serendipity, researchers at Rice University have created a tiny coaxial cable that is about a thousand times smaller than a human hair and has higher capacitance than previously reported microcapacitors. The nanocable was produced with techniques pioneered in the nascent graphene research field and could be used to build next-generation energy storage systems.

'Unzipped' carbon nanotubes could help energize fuel cells, batteries

May 31, 2012 4:36 am | News | Comments

Platinum catalysts in fuel cells are too expensive for large-scale production. Stanford University scientists have developed a technique that could make carbon nanotubes an attractive, low-cost alternative.

Berkeley Lab, CalCEF announce partnership

May 29, 2012 10:24 am | News | Comments

CalCEF, which creates institutions and investment vehicles for the clean energy economy, and Lawrence Berkeley National Laboratory announced a partnership to launch CalCharge, a consortium uniting California's emerging and established battery technology companies with critical academic and government resources.

Morgan Crucible, Boston-Power sign joint development agreement

May 24, 2012 3:30 am | News | Comments

The Morgan Crucible Company plc announced the signing of a joint development agreement between its wholly owned subsidiary, MorganAM&T Inc., and Boston-Power Inc. to accelerate development and commercialization of MorganAM&T's advanced anode technologies based on metal-loaded carbon nanoparticles.

Web tool helps determine best energy storage options

May 11, 2012 4:06 am | News | Comments

Sandia National Laboratories and the U.S. Department of Energy have released a new tool to help utilities, developers, and regulators identify the energy storage options that best meet their needs. Partnering with DNV KEMA, Sandia is releasing Energy Storage Select, or ES-Select, software under a public license to the company.

New nanostructure for batteries keeps going and going

May 10, 2012 8:00 am | News | Comments

For more than a decade, scientists have tried to improve lithium-based batteries by replacing the graphite in one terminal with silicon, which can store 10 times more charge. But after just a few charge/discharge cycles, the silicon structure would crack and crumble, rendering the battery useless. Now a team led by materials scientist has found a solution: a cleverly designed double-walled nanostructure that lasts more than 6,000 cycles, far more than needed by electric vehicles or mobile electronics.

Battery-like enzyme gets extended storage capability

April 19, 2012 5:46 am | by Luciana Gravotta | News | Comments

While working with an enzyme found in bacteria that is crucial for capturing solar energy, researchers in Michigan have found they can adjust the time the battery-like enzyme can store energy. In nature, the enzyme recovers from a charge-separated state in seconds, but changing the enzyme’s shape has extended storage to several hours.

Storage innovation expands horizons of compressed air energy

April 13, 2012 2:58 am | by Matt Hodson, University News Service | News | Comments

SustainX, a grid-scale developer of energy storage solutions, is commercializing  isothermal compressed air energy storage, which is typically accomplished using underground caverns.  However, this new technology, licensed from the University of Minnesota, uses pipe-type air storage, which makes it possible to store energy in more places.

Carbon nanoparticles improve lithium-sulfur batteries

April 11, 2012 11:11 am | News | Comments

In prototypes of the lithium-sulfur battery, lithium ions are exchanged between lithium- and sulfur-carbon electrodes. The sulfur is an excellent energy storage material due to its low weight. At the same time, sulfur is a poor conductor, so researchers have a devised a way to greatly  improve conductivity using a porous network of carbon nanoparticles.

'Tunable' metal nanostructures for batteries, fuel cells

April 3, 2012 6:31 am | by Bill Steele, Cornell University | News | Comments

For catalysts in fuel cells and electrodes in batteries, engineers would like to manufacture metal films that are porous, to make more surface area available for chemical reactions, and highly conductive, to carry off the electricity. The latter has been a frustrating challenge. But Cornell University chemists have now developed a way to make porous metal films with up to 1,000 times the electrical conductivity offered by previous methods.

Avoiding electrolyte failure in nanoscale lithium batteries

March 21, 2012 4:54 am | News | Comments

It turns out you can be too thin—especially if you're a nanoscale battery. A team of researchers built a series of nanowire batteries to demonstrate that the thickness of the electrolyte layer can dramatically affect the performance of the battery, effectively setting a lower limit to the size of the tiny power sources.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.