Advertisement
Batteries & Energy Storage
Subscribe to Batteries & Energy Storage
View Sample

FREE Email Newsletter

Silly Putty material inspires better batteries

May 16, 2014 7:56 am | by Sean Nealon, UC Riverside | News | Comments

Using a material found in Silly Putty and surgical tubing, a group of researchers at the Univ. of California, Riverside Bourns College of Engineering have developed a new way to make lithium-ion batteries that will last three times longer between charges compared to the current industry standard. The innovation involves the development of silicon dioxide nanotube anodes.

In the wake of high-profile battery fires, a safer approach emerges

May 14, 2014 9:36 am | News | Comments

As news reports of lithium-ion battery (LIB) fires in Boeing Dreamliner planes and Tesla electric cars remind us, these batteries, which are in everyday portable devices, like tablets and smartphones, have their downsides. Now, scientists have designed a safer kind of lithium battery component that is far less likely to catch fire and still promises effective performance.

Johnson Controls, UW-Madison join forces to test new battery technology

May 5, 2014 12:27 pm | by The Associated Press | News | Comments

A new laboratory at the Wisconsin Energy Institute on the Univ. of Wisconsin-Madison campus will strengthen Johnson Controls' innovation capabilities as the company researches and develops next-generation technology. The partnership represents the kind of innovation Johnson Controls is developing to craft the next generation of market-leading energy storage technology.

Advertisement

Flexible battery, no lithium required

April 28, 2014 7:39 am | News | Comments

A Rice Univ. laboratory has flexible, portable and wearable electronics in its sights with the creation of a thin film for energy storage. The laboratory developed a flexible material with nanoporous nickel-fluoride electrodes layered around a solid electrolyte to deliver battery-like supercapacitor performance that combines the best qualities of a high-energy battery and a high-powered supercapacitor without lithium.

Double-duty electrolyte enables new chemistry for longer-lived batteries

April 24, 2014 11:44 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have developed a new and unconventional battery chemistry aimed at producing batteries that last longer than previously thought possible. In a study published in the Journal of the American Chemical Society, ORNL researchers challenged a long-held assumption that a battery’s three main components can play only one role in the device.

Tesla delivers first China cars, plans expansion

April 22, 2014 11:19 am | by Joe McDonald, AP Business Writer | News | Comments

Tesla Motors Inc. delivered its first eight electric sedans to customers in China on Tuesday and CEO Elon Musk said the company will build a nationwide network of charging stations and service centers as fast as it can. Customers received the first Model S sedans this week at a brief ceremony at Tesla's office in a Beijing industrial park, also the site of its first Chinese charging station.

Trace Degradation Analysis of Lithium-Ion Battery Components

April 22, 2014 10:37 am | by Paul Voelker, Thermo Fisher Scientific, Sunnyvale, Calif. | Thermo Fisher Scientific | Articles | Comments

Rechargeable lithium-ion batteries are key components for portable electronics, medical devices, industrial equipment and automobiles. They are light weight, provide high energy density and recharge without memory effects. Much research has been spent on improving product safety, lifecycle and power output over a range of high and low temperatures, yet understanding fundamental processes and degradation mechanism remains a challenge.

Progress in the fight against quantum dissipation

April 17, 2014 7:50 am | by Eric Gershon, Yale Univ. | News | Comments

Scientists at Yale Univ. have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. High-quality quantum switches are essential for the development of quantum computers and the quantum Internet.

Advertisement

Relieving electric vehicle range anxiety with improved batteries

April 16, 2014 8:15 am | by Frances White, PNNL | News | Comments

Electric vehicles could travel farther and more renewable energy could be stored with lithium-sulfur batteries that use a unique powdery nanomaterial. Researchers added the powder, a kind of nanomaterial called a metal organic framework, to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges.

Relieving electric vehicle range anxiety with improved batteries

April 15, 2014 3:29 pm | News | Comments

The chemistry of lithium-ion batteries limits how much energy they can store, and one promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass. However, problematic polysulfides usually cause lithium-sulfur batteries to fail after a few charges. Researchers at Pacific Northwest National Laboratory, however, have developed a new powdery nanomaterial that could solve the issue.

How electrodes charge and discharge

April 3, 2014 9:17 am | by David L. Chandler, MIT | News | Comments

The electrochemical reactions inside the porous electrodes of batteries and fuel cells have been described by theorists, but never measured directly. Now, a team at MIT has figured out a way to measure the fundamental charge transfer rate — finding some significant surprises.

Hybrid vehicles more fuel efficient in India, China than in U.S.

March 31, 2014 4:14 pm | News | Comments

What makes cities in India and China so frustrating to drive in makes them ideal for saving fuel with hybrid vehicles, according to new research by scientists at Lawrence Berkeley National Laboratory. Heavy traffic, aggressive driving style and few freeways allow hybrids in these countries to deliver as much as a 50% increase in fuel savings over conventional internal combustion vehicles.

New battery technology employs sticky composites

March 26, 2014 9:20 am | by Diane Kukich, Univ. of Delaware | News | Comments

Lithium-ion batteries power a vast array of modern devices, from cell phones, laptops, and laser pointers to thermometers, hearing aids, and pacemakers. The electrodes in these batteries typically comprise three components: active materials, conductive additives, and binders. Now, a team of researchers at the Univ. of Delaware has discovered a “sticky” conductive material that may eliminate the need for binders.

Advertisement

Scientists track 3-D nanoscale changes in rechargeable battery material during operation

March 26, 2014 8:03 am | News | Comments

Scientists at Brookhaven National Laboratory have made the first 3-D observations of how the structure of a lithium-ion battery anode evolves at the nanoscale in a real battery cell as it discharges and recharges. The details of this research, described in a paper published in Angewandte Chemie, could point to new ways to engineer battery materials to increase the capacity and lifetime of rechargeable batteries.

Noting tech needs, mining companies seek graphite

February 27, 2014 6:18 am | by Dan Joling - Associated Press - Associated Press | News | Comments

Tear apart an electric car's rechargeable battery and you'll find a mineral normally associated with No. 2 pencils. It's graphite. And experts say the promise of expanded uses for "pencil lead" in lithium-ion batteries, as well as a decrease in supply from China, has helped touch off the largest wave of mining projects in decades.

Nanotechnology may be key to solar energy and energy storage

February 25, 2014 1:40 pm | News | Comments

A new study from the International Electrotechnical Commission and the Fraunhofer Institute in Europe has found that nanotechnology will bring significant benefits to the energy sector, especially to energy storage and solar energy. Improved materials efficiency and reduced manufacturing costs are just two of the real economic benefits that nanotechnology already brings these fields and that’s only the beginning.

Microscopy system delivers real-time view of battery electrochemistry

February 19, 2014 3:17 pm | News | Comments

Using a new microscopy method, researchers at Oak Ridge National Laboratory (ORNL) can image and measure electrochemical processes in batteries in real time and at nanoscale resolution. Scientists at ORNL used a miniature electrochemical liquid cell that is placed in a transmission electron microscope to study an enigmatic phenomenon in lithium-ion batteries called the solid electrolyte interphase.

Pomegranate-inspired design solves problems for lithium-ion batteries

February 18, 2014 8:46 am | News | Comments

An electrode designed like a pomegranate—with silicon nanoparticles clustered like seeds in a tough carbon rind—overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford Univ. and the SLAC National Accelerator Laboratory.

A battery small enough to be injected, energetic enough to track salmon

February 18, 2014 8:36 am | News | Comments

Scientists have created a microbattery that packs twice the energy compared to current microbatteries used to monitor the movements of salmon through rivers in the Pacific Northwest and around the world. The battery, a cylinder just slightly larger than a long grain of rice, is certainly not the world's smallest battery, as engineers have created batteries far tinier than the width of a human hair. 

NREL report finds similar value in two concentrating solar technologies

February 12, 2014 10:04 am | News | Comments

Parabolic troughs and dry-cooled towers deliver similar value for concentrating solar power (CSP) plants, despite different solar profiles, a new report by the National Renewable Energy Laboratory has found. The report found that the value of delivered energy of dry-cooled tower and parabolic trough CSP plants, integrated with thermal energy storage, are quite similar.

Researchers make breakthrough in battery technology

February 10, 2014 1:09 pm | News | Comments

Materials experts in Ireland have developed a new germanium nanowire-based anode that has the ability to greatly increase the capacity and lifetimes of lithium-ion batteries. The typical lithium-ion battery on the market today is based on graphite, which has a relatively low capacity for energy storage. Restructuring the germanium replacement material into nanowires produces a stable, porous battery material.

Gummy material addresses safety of lithium-ion batteries

February 4, 2014 8:39 am | by Tina Hilding, College of Engineering and Architecture | News | Comments

A group of Washington State Univ. researchers has developed a chewing gum-like battery material that could dramatically improve the safety of lithium-ion batteries. High-performance lithium batteries are popular in everything from computers to airplanes because they are able to store a large amount of energy compared to other batteries. Their biggest potential risk, however, comes from the electrolyte in the battery.

Commercialization license to advance batteries for renewable energy storage

January 29, 2014 7:56 am | News | Comments

A Massachusetts startup has signed a license agreement with Battelle to commercialize battery technology that can help store large amounts of renewable energy and improve the reliability of the nation's power grid. The license with Lowell, Mass.-based WattJoule Corp. is expected to advance the commercial use of redox flow battery technology.

Researcher develops energy-dense sugar battery

January 21, 2014 11:34 am | News | Comments

A Virginia Tech research team has developed a battery that runs on sugar, using a non-natural synthetic enzymatic pathway that strip all charge potentials from the sugar. While other sugar batteries have been developed, this one has an energy density an order of magnitude higher than others, allowing it to run longer before needing to be refueled.

Battery development may extend range of electric cars

January 10, 2014 7:59 am | News | Comments

It's known that electric vehicles could travel longer distances before needing to charge and more renewable energy could be saved for a rainy day if lithium-sulfur batteries can just overcome a few technical hurdles. Now, a novel design for a critical part of the battery has been shown to significantly extend the technology's lifespan, bringing it closer to commercial use.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading