Advertisement
Batteries & Energy Storage
Subscribe to Batteries & Energy Storage
View Sample

FREE Email Newsletter

New research could lead to more efficient electrical energy storage

March 4, 2015 11:52 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

Lawrence Livermore National Laboratory researchers have identified electrical charge-induced changes in the structure and bonding of graphitic carbon electrodes that may one day affect the way energy is stored. The research could lead to an improvement in the capacity and efficiency of electrical energy storage systems needed to meet the burgeoning demands of consumer, industrial and green technologies.

Energy-generating cloth could replace batteries in wearable devices

March 4, 2015 10:25 am | by American Chemical Society | News | Comments

From light-up shoes to smart watches, wearable electronics are gaining traction among consumers, but these gadgets’ versatility is still held back by the stiff, short-lived batteries that are required. These limitations, however, could soon be overcome.

Glass coating for improved battery performance

March 3, 2015 8:57 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications in energy-demanding electric vehicles. However, there have been fundamental road blocks to commercializing these sulfur batteries.

Advertisement

Electrochemical “fingers” unlock battery’s inner potential

February 27, 2015 8:18 am | by Justin Eure, Brookhaven National Laboratory | Videos | Comments

Lithium-ion batteries unleash electricity as electrochemical reactions spread through active materials. Manipulating this complex process and driving the reactions into the energy-rich heart of each part of these active materials is crucial to optimizing the power output and ultimate energy capacity of these batteries. Now, scientists have mapped these atomic-scale reaction pathways and linked them to the battery’s rate of discharge.

Using “fuzzy logic” to optimize hybrid solar/battery systems

February 26, 2015 11:11 am | by American Institute of Physics | News | Comments

How did fuzzy logic help a group of researchers in Tunisia and Algeria create an ideal photovoltaic system that obeys the supply-and-demand principle and its delicate balance? In the Journal of Renewable & Sustainable Energy, the group describes a new sizing system of a solar array and a battery in a standalone photovoltaic system that is based on fuzzy logic.

New flow battery to keep big cities lit, green and safe

February 25, 2015 10:27 am | by Frances White, PNNL | Videos | Comments

Ensuring the power grid keeps the lights on in large cities could be easier with a new battery design that packs far more energy than any other battery of its kind and size. The new zinc-polyiodide redox flow battery, described in Nature Communications, uses an electrolyte that has more than two times the energy density of the next-best flow battery used to store renewable energy and support the power grid.

Boosting carbon’s stability for better lithium-air batteries

February 25, 2015 9:15 am | by Ed Hayward, Boston College | News | Comments

To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size. That's one of the dilemmas confronting efforts to power cars through rechargeable battery technologies. In order to hold enough energy to enable a car trip of 300 to 500 miles before recharging, current lithium-ion batteries become too big or too expensive.

Electrolyte rids batteries of short-circuiting fibers

February 24, 2015 2:31 pm | by Frances White, PNNL | News | Comments

Dendrites create fire hazards and can limit the ability of batteries to power our smart phones and store renewable energy for a rainy day. Now a new electrolyte for lithium batteries that's described in Nature Communications eliminates dendrites while also enabling batteries to be highly efficient and carry a large amount of electric current.

Advertisement

A123: Apple Poached Engineers

February 19, 2015 2:00 pm | by Associated Press | News | Comments

Battery maker A123 Systems is suing Apple, claiming it aggressively poached some key staff members in violation of their nondisclosure and non-compete agreements when they left A123.  

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

Battery startup promises safe lithium batteries

February 10, 2015 9:53 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Lawrence Berkeley National Laboratory battery scientist Nitash Balsara has worked for many years trying to find a way to improve the safety of lithium-ion batteries. Now he believes he has found the answer in a most unlikely material: a class of compounds that has mainly been used for industrial lubrication.

Supercapacitors poised to help boost vehicle fuel efficiency

February 5, 2015 8:47 am | by American Chemical Society | News | Comments

Unlike slow and steady batteries, supercapacitors gulp up energy rapidly and deliver it in fast, powerful jolts. A growing array of consumer products is benefiting from these energy-storage devices, reports Chemical & Engineering News, with cars and trucks, and their drivers, poised to be major beneficiaries.

“Bulletproof” battery

January 28, 2015 9:55 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

New battery technology from the Univ. of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013. The innovation is an advanced barrier between the electrodes in a lithium-ion battery. Made with nanofibers extracted from Kevlar, the tough material in bulletproof vests, the barrier stifles the growth of metal tendrils that can become unwanted pathways for electrical current.

Advertisement

Research aims to improve lithium-based batteries

January 21, 2015 8:31 am | by Emil Venere, Purdue Univ. | News | Comments

Research probing the complex science behind the formation of "dendrites" that cause lithium-ion batteries to fail could bring safer, longer-lasting batteries capable of being charged within minutes instead of hours. The dendrites form on anode electrodes and may continue to grow until causing an internal short circuit, which results in battery failure and possible fire.

Glass for battery electrodes

January 13, 2015 11:51 am | by ETH Zurich | News | Comments

For some time now, energy experts have been adamant that we will need much more clean energy in the future if we are to replace fossil fuel sources and reduce carbon dioxide emissions. For example, electric cars will need to replace the petrol-powered cars driving on our roads.

One step closer to a next-generation electric car battery

January 12, 2015 11:22 am | by Nick Manning, Univ. of Waterloo | News | Comments

An ultra-thin nanomaterial is at the heart of a major breakthrough by Univ. of Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles. Their discovery of a material that maintains a rechargable sulphur cathode helps to overcome a primary hurdle to building a lithium-sulphur battery.

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

Possible avenue to better electrolyte for lithium ion batteries

December 22, 2014 10:04 am | News | Comments

The lithium-ion batteries that mobilize our electronic devices need to be improved if they are to power electric vehicles or store electrical energy for the grid. Berkeley Lab researchers looking for a better understanding of liquid electrolyte may have found a pathway forward.

Research aims to improve rechargeable batteries by focusing on graphene oxide paper

December 19, 2014 8:19 am | News | Comments

A Kansas State University engineering team has discovered some of graphene oxide's important properties that can improve sodium- and lithium-ion flexible batteries.                               

Electron spin could be key to high-temperature superconductivity

December 18, 2014 3:00 pm | News | Comments

EPFL scientists take a significant step in our understanding of superconductivity by studying the strange quantum events in a unique superconducting material.                 

Neutron CT helps solve battery fire puzzle

December 12, 2014 10:43 am | by Daniel Hussey, NIST | News | Comments

Earlier this month, the NTSB released its Aircraft Incident Report on a fire aboard a Japan Airlines Boeing 787, concluding that the fire was probably caused by an internal short circuit within a cell of the lithium-ion battery.       

New form of ice could explore avenues for energy production and storage

December 11, 2014 8:01 am | News | Comments

The discovery of a new form of ice could lead to an improved understanding of our planet’s geology, potentially helping to unlock new solutions in the production, transportation and storage of energy. Ice XVI, the least dense of all known forms of ice, has a highly symmetric cage-like structure that can trap gaseous molecules to form compounds known as clathrates or gas hydrates.

Revving Up Energy Solutions Innovation

December 8, 2014 5:02 pm | by Lindsay Hock, Managing Editor | Articles | Comments

During the 2014 R&D 100 Awards event, R&D Magazine expanded the banquet to hold four technology panels during the day. The last panel of the day focused on energy/environmental solutions and the innovation behind four R&D 100-winning technologies and the complexity of bringing such technologies to the market.

Nanoparticle network could bring fast-charging batteries

December 4, 2014 7:46 am | by Emil Venere, Purdue Univ. | News | Comments

A new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite.

Low-grade waste heat regenerates ammonia battery

December 3, 2014 3:49 pm | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

An efficient method to harvest low-grade waste heat as electricity may be possible using reversible ammonia batteries, according to Penn State Univ. engineers. Low-grade waste heat is an artifact of many energy-generating methods. In automobiles, waste heat generated in winter is diverted to run the vehicle heating system, but in the summer, that same waste heat must be dissipated to the environment.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading