Advertisement
Alternative Fuels & Energy
Subscribe to Alternative Fuels & Energy
View Sample

FREE Email Newsletter

Engineered bacteria produce biofuel alternative for high-energy rocket fuel

March 27, 2014 8:17 am | by John Toon, Georgia Institute of Technology | News | Comments

Researchers have engineered a bacterium to synthesize pinene, a hydrocarbon produced by trees that could potentially replace high-energy fuels, such as JP-10, in missiles and other aerospace applications. With improvements in process efficiency, the biofuel could supplement limited supplies of petroleum-based JP-10, and might also facilitate development of a new generation of more powerful engines.

Study: Wind farms can provide a surplus of reliable clean energy to society

March 21, 2014 8:33 am | by Mark Shwartz, Stanford Univ. | News | Comments

The demand for solar and wind power continues to skyrocket. Since 2009, global solar photovoltaic installations have increased about 40% a year on average, and the installed capacity of wind turbines has doubled. The dramatic growth of the wind and solar industries has led utilities to begin testing large-scale technologies capable of storing surplus clean electricity and delivering it on demand when sunlight and wind are in short supply.

Researchers model spent nuclear fuels for potential energy

March 21, 2014 8:11 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory scientists have modeled actinide-based alloys, such as spent nuclear fuel, in an effort to predict the impact of evolving fuel chemistry on material performance. This work could have direct implications for the use of spent nuclear fuel as another source of energy.

Advertisement

Clearing up cloudy understanding on solar power plant output

March 19, 2014 8:15 am | by Stephanie Hobby, Sandia National Laboratories | News | Comments

Sandia National Laboratories engineers have been studying the most effective ways to use solar photovoltaic (PV) arrays—a clean, affordable and renewable way to keep the power on. Systems are relatively easy to install and have relatively small maintenance costs. They begin working immediately and can run unassisted for decades.

Discovery could yield more efficient plants for biofuels

March 18, 2014 8:16 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Genetically modifying a key protein complex in plants could lead to improved crops for the production of cellulosic biofuels, a Purdue Univ. study says. The researchers generated a mutant Arabidopsis plant whose cell walls can be converted easily into fermentable sugars, but doesn't display the stunted growth patterns of similar mutants.

NIST zero-energy house gives back to the grid

March 14, 2014 7:50 am | News | Comments

Over the first six months in their special, new, four-bedroom home in suburban Maryland, the Nisters, a prototypical family of four, earned about $40 by exporting 328 kW-h of electricity into the local grid, while meeting all of their varied energy needs. These virtual residents of the Net-Zero Energy Residential Test Facility (NZERTF) on the campus of NIST didn't have to skimp the creature comforts of 21st century living, either.

Small biomass power plants could help rural economies, stabilize national power grid

March 11, 2014 8:44 am | by Nathan Hurst, Univ. of Missouri | News | Comments

As energy costs rise, more Americans are turning to bioenergy to provide power to their homes and workplaces. Bioenergy is renewable energy made from organic sources, such as biomass. Technology has advanced enough that biomass power plants small enough to fit on a farm can be built at relatively low costs. Now, researchers have found that creating a bioenergy grid with these small plants could benefit people in rural areas.

Driving down fuel usage

March 10, 2014 10:57 am | by Rob Matheson, MIT News Office | News | Comments

Despite their potential to reduce carbon dioxide emissions and fuel consumption, electric and hybrid cars and trucks struggled for years to find a solid customer base. Much of the reason came down to cost and convenience: Electric car batteries are expensive, and charging them requires plug-in infrastructure that’s still sparse in the U.S.

Advertisement

New hybrid material promising for solar fuels

March 9, 2014 11:42 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new study by Berkeley Lab researchers shows that nearly 90% of the electrons generated by a hybrid material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules. Interfacing the semiconductor gallium phosphide with a cobaloxime catalyst provides an inexpensive photocathode for bionic leaves that produce energy-dense fuels from nothing more than sunlight, water and carbon dioxide.

Galactic gas stations

March 7, 2014 1:31 pm | by Jennifer Chu, MIT News Office | News | Comments

Future lunar missions may be fueled by gas stations in space, according to Massachusetts Institute of Technology engineers: A spacecraft might dock at a propellant depot, somewhere between the Earth and the moon, and pick up extra rocket fuel before making its way to the lunar surface.

Freudenberg Puts FEA Seal of Approval on Gasket

March 6, 2014 12:09 pm | by Nick O'Donohoe, Science and Technology Writer, Parker Group | Articles | Comments

The wind has long been used as a metaphor for constant change, wayward and capricious. Wind turbine engineers deal with that changeability every day, along with a host of other challenging factors. Their products must operate in desert sandstorms and in corrosive salt water. The ambient temperature at the turbine site can be blisteringly high or numbingly frigid.

Team discovers unexpected effect of heavy hydrogen in organic solar cells

March 6, 2014 10:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Photovoltaic spray paint could coat the windows and walls of the future if scientists are successful in developing low-cost, flexible solar cells based on organic polymers. Scientists at Oak Ridge National Laboratory recently discovered an unanticipated factor in the performance of polymer-based solar devices that gives new insight on how these materials form and function.

Researchers identify key intermediate steps in artificial photosynthesis reaction

March 6, 2014 9:11 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Artificial photosynthesis, in which we emulate the process used by nature to capture energy from the sun and convert it into electrochemical energy, is expected to be a major asset in any sustainable energy portfolio for the future. Artificial photosynthesis offers the promise of producing liquid fuels that are renewable and can be used without exacerbating global climate change.

Advertisement

New catalyst could lead to cleaner energy

March 6, 2014 8:20 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have devised a way to trap carbon dioxide and transform it into useful organic compounds, using a simple metal complex. More work is needed to understand and optimize the reaction, but one day this approach could offer an easy and inexpensive way to recapture some of the carbon dioxide emitted by vehicles and power plants.

Biomass industry must prepare for water constraints

February 28, 2014 7:43 am | by Phil Ciciora, Business & Law Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

The viability of the bioenergy crops industry could be strengthened by regulatory efforts to address nonpoint source pollution from agricultural sources. That, in turn, means that the industry should be strategic in developing metrics that measure the ability to enact positive changes in agricultural landscapes, particularly through second-generation perennial crops, according to a paper by a Univ. of Illinois expert in bioenergy law.

Offshore wind farms could tame hurricanes

February 27, 2014 1:26 pm | by Bjorn Carey, Stanford Univ. | Videos | Comments

For the past 24 years, Mark Z. Jacobson, a prof. of civil and environmental engineering at Stanford Univ., has been developing a complex computer model to study air pollution, energy, weather and climate. A recent application of the model has been to simulate the development of hurricanes. Another has been to determine how much energy wind turbines can extract from global wind currents.

Superabsorbing design may lower manufacturing cost of thin-film solar cells

February 26, 2014 7:42 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a superabsorbing design that may significantly improve the light absorption efficiency of thin-film solar cells and drive down manufacturing costs. The superabsorbing design could decrease the thickness of the semiconductor materials used in thin-film solar cells by more than one order of magnitude without compromising the capability of solar light absorption.

Team converts sugarcane to a cold-tolerant, oil-producing crop

February 24, 2014 11:23 am | by Diana Yates, Univ. of Illinois | News | Comments

A multi-institutional team reports that it can increase sugarcane’s geographic range, boost its photosynthetic rate by 30% and turn it into an oil-producing crop for biodiesel production. These are only the first steps in a bigger initiative that will turn the highly productive sugarcane and sorghum crop plants into even more productive, oil-generating plants.

New, inexpensive production materials boost promise of hydrogen fuel

February 24, 2014 8:36 am | by Chris Barncard, Univ. of Wisconsin-Madison | News | Comments

Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars and trains. The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel.

Research: U.K. failing to harness its bioenergy potential

February 19, 2014 10:26 am | by Aeron Haworth, Media Relations, The Univ. of Manchester | News | Comments

The U.K. could generate almost half its energy needs from biomass sources, including household waste, agricultural residues and home-grown biofuels by 2050, new research suggests. Scientists from the Tyndall Centre for Climate Change Research at The Univ. of Manchester found that the U.K. could produce up to 44% of its energy by these means without the need to import.

Study: America's natural gas system is leaky and in need of a fix

February 14, 2014 8:05 am | by Mark Golden, Stanford Univ. | News | Comments

The first thorough comparison of evidence for natural gas system leaks confirms that organizations including the Environmental Protection Agency (EPA) have underestimated U.S. methane emissions generally, as well as those from the natural gas industry specifically.

Study: Renewable energy won’t fix Abu Dhabi’s consumption problem

February 13, 2014 1:15 pm | News | Comments

Abu Dhabi’s recent expensive renewable energy venture will neither allow the United Arab Emirates to forgo construction of conventional energy generation, nor will it provide more than a token reduction in carbon-emissions growth, according to a new paper from Rice Univ.’s Baker Institute for Public Policy.

Report: Plastic shopping bags make a fine diesel fuel

February 12, 2014 1:15 pm | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Plastic shopping bags, an abundant source of litter on land and at sea, can be converted into diesel, natural gas and other useful petroleum products, researchers report. The conversion produces significantly more energy than it requires and results in transportation fuels that can be blended with existing ultra-low-sulfur diesels and biodiesels. Other products, such as natural gas and gasoline also can be obtained from shopping bags.

NREL report finds similar value in two concentrating solar technologies

February 12, 2014 10:04 am | News | Comments

Parabolic troughs and dry-cooled towers deliver similar value for concentrating solar power (CSP) plants, despite different solar profiles, a new report by the National Renewable Energy Laboratory has found. The report found that the value of delivered energy of dry-cooled tower and parabolic trough CSP plants, integrated with thermal energy storage, are quite similar.

Waste from age-old paper industry becomes new source of solid fuel

February 12, 2014 9:47 am | News | Comments

In today’s search for renewable energy sources, researchers are turning to the high-tech, from solar and hydrogen fuel cells, and the very low-tech. The latest example of a low-tech alternative comes from an age-old industry: paper. A new study reveals a sustainable way to turn the huge amounts of waste from paper production into solid fuel with the added bonus of diverting the sludge from overflowing landfills.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading