Advertisement
Alternative Fuels & Energy
Subscribe to Alternative Fuels & Energy
View Sample

FREE Email Newsletter

Bionic liquids from lignin

August 19, 2014 7:44 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon—bionic liquids. Researchers at the Joint BioEnergy Institute have developed “bionic liquids” from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

Copper foam turns CO2 into useful chemicals

August 13, 2014 8:21 am | by Kevin Stacey, Brown Univ. | News | Comments

A catalyst made from a foamy form of copper has vastly different electrochemical properties from catalysts made with smooth copper in reactions involving carbon dioxide, a new study shows. The research, by scientists in Brown Univ.’s Center for the Capture and Conversion of CO2, suggests that copper foams could provide a new way of converting excess CO2 into useful industrial chemicals.

NC State partners with Bio2Electric on new catalyst technology

August 13, 2014 8:11 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

North Carolina State Univ. is part of a project team that is researching and developing new catalyst technology to produce the commercially important chemicals ethylene and propylene from natural gas. The project lead, Bio2Electric, LLC, dba EcoCatalytic Technologies, is collaborating with North Carolina State Univ., among other industry partners, to develop the new catalyst technologies.

Advertisement

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

August 12, 2014 12:34 pm | News | Comments

As hemp makes a comeback in the U.S. after a decades-long ban on its cultivation, scientists are reporting that fibers from the plant can pack as much energy and power as graphene, long-touted as the model material for supercapacitors. A team has figured out how to make electrodes from certain hemp fibers, and the breakthrough came from figuring out how to process them.

Running on waste heat

August 11, 2014 7:36 am | by Rob Matheson, MIT News Office | News | Comments

It’s estimated that more than half of U.S. energy is wasted as heat. Mostly, this waste heat simply escapes into the air. But that’s beginning to change, thanks to thermoelectric innovators such as Massachusetts Institute of Technology’s Gang Chen. Thermoelectric materials convert temperature differences into electric voltage.

Turning methane into usable liquid fuel

August 5, 2014 8:48 am | by Louise Lerner, Argonne National Laboratory | News | Comments

Researchers from Argonne National Laboratory and the Illinois Institute of Technology were awarded $2 million over the course of two years to fund studies on hybrid fuel cells from the Advanced Research Projects Agency – Energy. The research seeks to create a fuel cell that would both produce electricity and convert methane gas to ethane or ethylene that could then be converted to a liquid fuel or valuable chemicals.

“Wetting” a battery’s appetite for renewable energy storage

August 4, 2014 9:22 am | by Frances White, PNNL | Videos | Comments

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material could allow more utilities to store large amounts of renewable energy and make the nation's power system more reliable and resilient.

NIST corrosion lab tests suggest need for underground gas tank retrofits

July 30, 2014 7:40 am | by Laura Ost, NIST | News | Comments

A hidden hazard lurks beneath many of the roughly 156,000 gas stations across the U.S. The hazard is corrosion in parts of underground gas storage tanks. In recent years, field inspectors in nine states have reported many rapidly corroding gas storage tank components such as sump pumps.

Advertisement

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Study shows how to power California with wind, water and sun

July 25, 2014 6:49 am | by Rob Jordan, Stanford Univ. | News | Comments

New Stanford Univ. research outlines the path to a possible future for California in which renewable energy creates a healthier environment, generates jobs and stabilizes energy prices. Among other metrics, the plan calculates the number of new devices and jobs created, land and ocean areas required, and policies needed for infrastructure changes.

Study: Forward osmosis desalination not energy efficient

July 24, 2014 7:37 am | by Alissa Mallinson | MIT Dept. of Mechanical Engineering | News | Comments

In a recent study published in the Journal of Membrane Science, a Massachusetts Institute of Technology team reported that, contrary to popular support, forward osmosis desalination of seawater is significantly less energy efficient, compared to reverse osmosis. In forward osmosis, water is drawn from the seawater into a concentrated salt solution, known as a draw solution.

Spinach could lead to alternative energy more powerful than Popeye

July 23, 2014 4:07 pm | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Spinach gave Popeye super strength, but it also holds the promise of a different power for a group of scientists: the ability to convert sunlight into a clean, efficient alternative fuel. Purdue Univ. physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.

Advertisement

Mats made from shrimp chitin attract uranium like a magnet

July 18, 2014 11:16 am | News | Comments

A Univ. of Alabama start-up company, 525 Solutions, has received about $1.5 million from the federal government to refine an invention to extract uranium from the ocean for use as fuel. It is an adsorbent, biodegradable material made from the compound chitin, which is found in crustaceans and insects. The researchers have developed transparent sheets, or mats, comprised of tiny chitin fibers, which pull uranium from the water.

Engineering a more efficient fuel cell

July 9, 2014 10:38 am | by Glen Martin, Stanford New Service | News | Comments

Using high-brilliance x-rays, Stanford Univ. researchers track the process that fuel cells use to produce electricity, knowledge that will help make large-scale alternative energy power systems more practical and reliable. Fuel cells use oxygen and hydrogen as fuel to create electricity; if the process were run in reverse, the fuel cells could be used to store electricity, as well.  

Water-cleanup catalysts tackle biomass upgrading

June 26, 2014 12:33 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. chemical engineer Michael Wong has spent a decade amassing evidence that palladium-gold nanoparticles are excellent catalysts for cleaning polluted water, but even he was surprised at how well the particles converted biodiesel waste into valuable chemicals.

Researchers develop smart gating nanochannels for confined water

June 25, 2014 11:14 am | News | Comments

Confined water exists widely and plays important roles in natural environments, particularly inside biological nanochannels. After several years of work, scientists in China have developed a series of biomimetic nanochannels that can serve as the base for confined transportation of water. The technology suggests a potential use in energy conversion systems.

A new resource for advanced biofuels research

June 25, 2014 8:21 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers at the Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls. The idea behind “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.

Discovery Park center awarded grant to advance energy economy

June 23, 2014 7:47 am | by Phillip Fiorini, Purdue Univ. | News | Comments

A research center at Purdue Univ.'s Discovery Park has been awarded a $12 million, four-year grant as part of a $100 million U.S. Dept. of Energy initiative to accelerate scientific breakthroughs needed to build the 21st century energy economy. The Purdue-led C3Bio will use the additional funding to advance methods for converting plant lignocellulosic biomass to biofuels and other bio-based products.

Mitsubishi, Siemens mull bid for Alstom units

June 12, 2014 2:20 am | by Elaine Kurtenbach - AP Business Writer - Associated Press | News | Comments

The possible bid by Mitsubishi Heavy Industries for turbine businesses of French engineering firm Alstom is part of Japan's effort to carve out a share of the lucrative global energy infrastructure business. Mitsubishi and German rival Siemens AG said Wednesday they are considering a joint bid for parts of Alstom and will decide by Monday whether to pitch it to Alstom's board.

A new solution for storing hydrogen fuel

June 11, 2014 8:36 am | News | Comments

Turning the “hydrogen economy” concept into a reality, even on a small scale, has been a bumpy road, but scientists are developing a novel way to store hydrogen to smooth out the long-awaited transition away from fossil fuels. Their report on a new solid, stable material that can pack in a large amount of hydrogen that can be used as a fuel appears in Chemistry of Materials.

Ionic liquid boosts efficiency of carbon dioxide reduction catalyst

June 6, 2014 7:50 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Wouldn’t it be nice to use solar- or wind-generated electricity to turn excess carbon dioxide into fuels and other useful chemicals? The process would store up the intermittent solar or wind energy in a form that could be used when and where it was needed, including in transportation applications, all while getting rid of some greenhouse gas.

Integration Realized

June 4, 2014 3:43 pm | by Paul Livingstone | Articles | Comments

Today’s smartphone is a complicated power device, using a small lithium-ion battery of about 1,400-mAh capacity to power a variety of electronic systems, including a touchscreen display, a central processing unit, antennas, speakers and a microphone. All of its components, including the materials used to build it, are optimized to perform as efficiently as possible to extend battery life.

Fullerene-Free Organic Solar

June 4, 2014 2:39 pm | by Paul Livingstone | Articles | Comments

Investigated heavily since the 1970s, solar cells have been the great unfulfilled promise for unlimited, almost free energy to power the world. The reasoning is solid: The Earth absorbs almost as much energy per hour than the entire human race uses in a single year.

Study: Solar panel manufacturing is greener in Europe than China

May 30, 2014 8:42 am | by Louise Lerner, Argonne National Laboratory | News | Comments

Solar panels made in China have a higher overall carbon footprint and are likely to use substantially more energy during manufacturing than those made in Europe, said a new study from Northwestern Univ. and Argonne National Laboratory. The report compared energy and greenhouse gas emissions that go into the manufacturing process of solar panels in Europe and China.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading