Advertisement
R&D 100 Awards
Subscribe to R&D 100 Awards

The Lead

2014 R&D 100 Award Winners

August 27, 2014 9:53 am | Award Winners

Introducing R&D Magazine's 2014 R&D 100 Award winners. The 2014 R&D 100 Award Winners are listed below in alphabetical order by the name of the primary developer company.

Nanofactory in a Box

August 26, 2014 11:06 am | Award Winners

Growing, harvesting and characterizing nanowires sounds like a job for an experienced researcher...

Resistance is Not Futile

August 26, 2014 10:52 am | Award Winners

In lithography, polymer “resists” are applied as a thin, continuous layer over material that is...

Low-cost Solar through Fast Production

August 26, 2014 10:41 am | Award Winners

Crystalline silicon has continued to lead the market in the worldwide adoption of solar energy...

View Sample

FREE Email Newsletter

Fast Vacuum for Next-Gen Processes

August 26, 2014 10:20 am | Award Winners

The semiconductor industry is starting to adopt rapid processes that require pressure values processed in as little as 0.5 msec, yet produce low noise. This performance is needed to build chips that generate less heat, run cooler and need less cooling resources. Speed and noise improvements, available in INFICON’s new Stripe CDG capacitive diaphragm gauge, fulfill the requirements of this next level of structure reduction in the process industry.

Accurate, Repeatable LED Metrology

August 26, 2014 9:58 am | Award Winners

The key step in the LED manufacturing process is the epitaxial growth of quantum well active layers on a wafer substrate using technology such as metal-organic chemical vapor deposition (MOCVD). The characterization of the resulting “epi” wafer is typically done by the “indium dot” method, a slow and largely manual method that involves injecting current into dot electrodes that test the wafer, but also damages it. Bruker Nano Surfaces has an alternative.

Numerical Simulation of Multiphysics Processes

August 25, 2014 4:11 pm | Award Winners

Sandia National LaboratoriesGoma 6.0 is software for numerical simulation of multiphysics continuum processes, including moving geometry, phase-change, fluid-structural interactions, complex rheology and chemical reactions. It solves the fundamental equations of mass, momentum, energy and chemical species transport using the finite element method (FEM), which can be described by partial differential equations.

Advertisement

Heightened Multiphysics

August 25, 2014 3:53 pm | Award Winners

Modeling and simulation is standard practice in nearly every scientific field. Idaho National Laboratory’s Multiphysics Object Oriented Simulation Environment (MOOSE) has transformed approaches to predictive simulation, making it quick, adaptable and more accessible. MOOSE is a computer software that can be loaded onto most UNIX-compliant operating systems including, but not limited to, Mac OS X, Ubuntu, OpenSuSE, Fedora, CentOS and Redhat.

Better Decision Making

August 25, 2014 3:40 pm | Award Winners

Oak Ridge National Laboratory has developed iSPM: Intelligent Software Suite for Personalized Modeling of Expert Opinions, Decisions and Errors in Visual Examination Tasks, a novel technology utilizing eye-tracking hardware, an intelligent GUI engine and advanced analytics to predict an individual’s perceptual behavior, cognitive response and risk of error for complex decision tasks such as cancer diagnosis from medical images.

Simplifying Electrolyte Selection

August 25, 2014 3:27 pm | Award Winners

Mapping of the human genome has advanced our understanding of life, health and potential cures for diseases. Many technologies could benefit from genome-level investigations. Now, a disruptive virtual scientific simulation tool that delivers a genome-level investigation for electrolytes is available. Idaho National Laboratory’s Kevin Gering has developed the Advanced Electrolyte Model (AEM), a molecular-based, scientifically proven simulation tool.

Aircraft Sense and Avoid

August 25, 2014 3:08 pm | Award Winners

MIT Lincoln Laboratory’s Airborne Sense and Avoid (ABSAA) Radar Panel is a stepped-notch antenna array that marks a substantial advance in the fabrication of wide-bandwidth radar systems for use aboard unmanned aerial systems (UAS). The panel provides high performance by incorporating multifunction radio-frequency integrated circuits using a commercially available, high-volume silicon germanium (SiGe) 0.13-μm foundry process.

An Intelligent Pigment

August 25, 2014 2:52 pm | Award Winners

Chemochromic pigments can be very robust hydrogen leak indicators due to their highly visible, long-term stability and reliable chemical reactions between the pigments and hydrogen. However, their implementation is often difficult because of environmental interference and gas permeability of the host materials. Patented research from the Univ. of Central Florida, NASA John F. Kennedy Space Center and HySense Technology LLC solves the known issues by combining a palladium-oxide chemochromic pigment in a novel silicon matrix that is environmentally resistant while being hydrogen permeable.

Advertisement

Precision Optics in One Step

August 25, 2014 2:31 pm | Award Winners

Lawrence Livermore National Laboratory scientists have developed a new polishing system capable of finishing flat and spherical glass optics in a single iteration, regardless of the workpieces’ initial shape. Convergent Polishing: Rapid, Simple, Low Cost Finishing of High Quality Glass Optics is able to “converge” several steps because factors contributing to non-uniform spatial material removal on the workpiece have been eliminated and the creation of rogue particles within the polisher system have been removed.

Friction-beating Engine Coating

August 25, 2014 2:12 pm | Award Winners

Efforts to reduce carbon dioxide emissions will factor heavily into engine development by OEMs, and this will be accomplished in large part from the reduction of internal friction. Daimler AG has made a significant advance in this area with the introduction of NANOSLIDE, an innovative coating for cylinder running surfaces of combustion engines to reduce CO2 emissions, which allows for the use of lighter crankshafts and reduces friction losses in the piston assembly.

Toxic-free Coating, On the Go

August 25, 2014 1:58 pm | Award Winners

The recent development of a new class of ionic liquid electrolytes has allowed the development of the Portable Aluminum Deposition System (PADS) by Oak Ridge National Laboratory and United Technologies Research Center. The breakthrough liquid formulation was achieved, in part, by the use of hydrophobic neutral ligands, which considerably increased the air stability of the plating electrolytes.

Automated Bin-picking

August 25, 2014 12:07 pm | Award Winners

Mitsubishi Electric Corp.’s MELFA-3D Vision system for industrial robot arms completely automates bin-picking tasks. A projector creates multiple slit patterns that are projected on the piled parts, which are captured with the camera. A depth map is reconstructed by using the captured images and a structured-light decoding algorithm.

Precision Stage for Nanoscale Studies

August 25, 2014 12:00 pm | Award Winners

A deeper understanding of microstructure-mechanical property correlations to processing conditions is sought by many industries. Hysitron Inc.’s xSol High Temperature Stage is a new platform that supports this effort, allowing researchers to make high-resolution nanomechanical measurements over a broad temperature range.

Advertisement

Lower Emissions, More Power

August 25, 2014 11:44 am | Award Winners

By 2025, the automotive industry is required to reduce carbon dioxide (CO2) emission by at least 30% while reducing pollutant emissions by a factor of three. For decades, efforts to meet ever-increasing standards like this have depended on a thorough understanding of Otto cycle dynamics in internal combustion engines and development of ways to change emissions through exhaust gas recirculation (EGR). Toward this goal, Dedicated-EGR (D-EGR) by Southwest Research Institute (SwRI) goes to new lengths by “dedicating” a separately controlled cylinder that is allowed to run rich.

Encoder-free Servo Motors

August 25, 2014 11:21 am | Award Winners

Industrial conveying and handling machines typically use expensive permanent magnet synchronous drives (“servo”) or cheaper induction motors equipped with brakes and clutches. Induction motors, because of their design, suffer from efficiency losses. Servo drives, meanwhile, are seen as less durable because they are equipped with sensitive encoders and extra wiring. Engineers at Mitsubishi Electric Corp. have eliminated the worst features of both designs with the Sensor-less Servo Drive Unit FR-E700EX Series and Sensor-less Motor MM-GKR, which controls speed or position without the need for an encoder.

Wide-area Millimeter Motions

August 25, 2014 11:04 am | Award Winners

Applications such as silicon wafer alignment or bio‐cell manipulations require fast and accurate positioning within a few millimeters working range. Widely used piezoelectric (PZT) actuators, however, have displacement ranges limited to hundreds of micrometers. Displacement-amplification techniques such as “inchworm” clamping have been introduced, but suffer from poor motion repeatability, low payload and low speed. This has produced a challenge for the precision engineering industry that has been met by the Singapore Institute of Manufacturing Technology (SIMTech) with the introduction of its Flexure‐based Electromagnetic Linear Actuator (FELA).

Super Superelastic Alloys

August 25, 2014 10:44 am | Award Winners

Corrosion, denting, abrasive wear and fatigue often lead to life-limiting bearing and gear failure in harsh conditions. Existing materials, such as hard steels, are prone to corrosion and rust; ceramics are non-conductive, difficult to manufacture and brittle; and superalloys are soft and susceptible to wear and damage. Working with Abbott Ball Company, NASA’s Glenn Research Center has successfully developed a set of methods to create high-performance alternatives to conventional bearing materials.

Stronger with Aluminum

August 25, 2014 10:24 am | Award Winners

Thermal fatigue is one of the most important properties in materials used as automobile’s exhaust parts, particularly near the hotter manifold section. When the exhaust gas passes through these parts, they thermally expand or shrink. But they can’t do this freely because of surrounding parts, which leads them to deform or fracture. The solution has long been to add molydenum to the ferritic heat-resistant stainless steels typically used for automobile exhausts. JFE Steel Corp., however, has achieved resistance to thermal fatigue fracture without the use of high-cost molydenum in its JFE-TF1 steel.

Fire Resistant Performance Wear

August 25, 2014 9:58 am | Award Winners

Roughly one million workers today are required to wear protective, fire-resistant (FR) garments in the U.S. However, because these protective garments are often heavy and uncomfortable, workers are reluctant to wear them and burn accidents are still commonplace. The iQ Series Comfort Knit Amplitude G2 Flame Resistant Fabric from Milliken & Company and Bulwark FR was designed to combine comfort with strong FR characteristics. It provides flash fire and arc flash protection while delivering three comfort attributes: lighter weight, breathability and moisture management.

Super-tunable Nanomembranes

August 22, 2014 4:11 pm | Award Winners

Membrane technologies are crucial in a variety of separation processes, from biotechnology to energy. Current membrane developments are bottlenecked by the “selectivity vs permeability paradox”. That is, the higher selectivity achieved by use of small pores (of less than 0.5 nm) is compromised by the lower permeability flux, and vice versa. This is especially evident in parasitic energy loss for ethanol-water separations. A new type of nanomembrane, Oak Ridge National Laboratory’s High-Performance Architectured Surface Selective (HiPAS) membranes combine a superhydrophobic surface selectivity layer with an architectured high-flux membrane layer to eliminate this Catch-22.

Preventing Proppant Flowback

August 22, 2014 3:56 pm | Award Winners

A new type of resin-coated sand created by Preferred Sands and The Dow Chemical Company addresses this difficulty, providing measurable particle bond strength in the temperature range of 75 to 140 F without the aid of an external surfactant or activator. Preferred RCS Garnet 2.0 resin-coated sand delivers this performance with the help of a special polyurethane polymer bonding mechanism that utilizes Dow’s Teraforce technology.

Better Protection for Offshore Oil

August 22, 2014 3:45 pm | Award Winners

Increasing demand for oil as an energy source and sustained prices of oil on the world market are driving offshore oil producers to seek new finds further offshore. One challenge with deep-water projects is that the emerging oil is much hotter than the surrounding sea, which is near freezing, and needs to be kept warm as it flows through subsea flow elements and pipes to prevent blockage. As a result, flow systems on the seafloor are typically insulated. The Oil Gas & Mining R&D Div. of The Dow Chemical Company has commercialized an innovative new insulation product that can be used in projects that see oil temperatures up to 160 C.

LFA Technology Helps Sniff Out Anthrax

August 22, 2014 3:04 pm | Award Winners

To mitigate anthrax attack risks, Sandia National Laboratories developed a credit-card sized device based on the lateral flow assay for detection of B. anthracis in ultra-low resource environments: BaDx (Bacillus anthracis diagnostics). BaDx is a low-cost, disposable device that requires no power, instrumentation or equipment to operate, and no refrigeration to maintain efficacy.

Efficient Bioengineering

August 22, 2014 2:50 pm | Award Winners

Lawrence Berkeley National Laboratory’s Tissue-Specific Cell-Wall Engineering is a powerful new method for rapidly transforming crops into biological factories. The technology, a suite of high-precision genetic tools and procedures, makes it possible to change plant traits in a highly selective, tissue-specific fashion.

Gold Standard for Laparoscopic Surgery

August 22, 2014 2:38 pm | Award Winners

Laparoscopic Surgery was introduced with a goal to reduce morbidities associated with open surgical techniques. Twenty years later, although it has brought much better outcomes across a number of indicators, it still has some significant patient morbidities and mortality risks associated with it. Port site hernia is one such example. No ubiquitous global device-based standard of care developed has been accepted to deal with this issue. neoSurgical’s neoClose brings a simple, accurate technology/device-based solution that can be deployed in less than 30 sec.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading