Advertisement
University of Pennsylvania
Subscribe to University of Pennsylvania

The Lead

Understanding graphene’s electrical properties on an atomic level

July 22, 2014 7:38 am | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

Graphene, a material that consists of a lattice of carbon atoms, one atom thick, is widely touted as being the most electrically conductive material ever studied. However, not all graphene is the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function.

Research develops “onion” vesicles for drug delivery

June 10, 2014 11:22 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

One of the defining features of cells is their membranes. Each cell’s repository of DNA and...

The motion of the medium matters for self-assembling particles

April 10, 2014 8:16 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

By attaching short sequences of single-stranded DNA to nanoscale building blocks, researchers...

New gel permits targeted therapy after heart attack

April 1, 2014 8:17 am | News | Comments

Combatting the tissue degrading enzymes that cause...

View Sample

FREE Email Newsletter

Gene therapy seems safe, may help control HIV

March 5, 2014 5:21 pm | by Marilynn Marchione - AP Chief Medical Writer - Associated Press | News | Comments

Scientists have modified genes in the blood cells of HIV patients to help them resist the AIDS virus, and say the treatment seems safe and promising. The results give hope that this approach might one day free at least some people from needing medicines to keep HIV under control, a form of cure.

Researchers “design for failure” with model material

February 24, 2014 11:02 am | News | Comments

When deciding what materials to use in building something, determining how those materials respond to stress and strain is often the first task. A material’s macroscopic, or bulk, properties in this area is generally the product of what is happening on a microscopic scale. When stress causes a material’s constituent molecules to rearrange in a way such that they can't go back to their original positions, it is known as plastic deformation.

Geophysicist teams with mathematicians to describe how river rocks round

February 13, 2014 10:27 am | News | Comments

For centuries, geologists have recognized that the rocks that line riverbeds tend to be smaller and rounder further downstream. But these experts have not agreed on the reason these patterns exist. Does abrasion reduce the size of rocks significantly, or is it that smaller rocks are simply more easily transported downstream? A new study has arrived at a resolution to this puzzle.

Advertisement

Optogenetic toolkit goes multicolor

February 10, 2014 7:39 am | News | Comments

Optogenetics allows scientists to control neurons’ electrical activity with light by engineering them to express light-sensitive proteins, called opsins. Most opsins respond to light in the blue-green range. Now, a team has discovered an opsin that is sensitive to red light, which allows researchers to independently control the activity of two populations of neurons at once, enabling much more complex studies of brain function.  

Tweaking MRI to track creatine may spot heart problems earlier

January 13, 2014 10:41 am | News | Comments

A new MRI method to map creatine at higher resolutions in the heart may help clinicians and scientists find abnormalities and disorders earlier than traditional diagnostic methods, researchers at the Univ. of Pennsylvania suggest in a recent study. The preclinical findings show an advantage over less sensitive tests and point to a safer and more cost-effective approach than those with radioactive or contrasting agents.

Research lays out theory for metamaterial that acts as an analog computer

January 10, 2014 8:39 am | News | Comments

The field of metamaterials has produced structures with unprecedented abilities, including flat lenses, invisibility cloaks and even optical metatronic devices that can manipulate light in the way electronic circuitry manipulates the flow of electrons.  Now, the birthplace of the digital computer, ENIAC, is using this technology in the rebirth of analog computing.

Researchers grow liquid crystal “flowers” that can be used as lenses

December 23, 2013 11:17 am | News | Comments

In earlier studies, a team from the Univ. of Pennsylvania produced nanoscale grids and rings of “defects,” or useful disruptions in the repeating patterns found in liquid crystals. Their latest study adds a more complex pattern out of an even simpler template: A 3-D array in the shape of a flower. This advances the use of liquid crystals as a medium for assembling structures.

Team identifies mechanism of cancer spread

December 13, 2013 9:59 am | News | Comments

Cancer involves a breakdown of normal cell behavior. Cell reproduction and movement go haywire, causing tumors to grow and spread through the body. A new finding by Univ. of Pennsylvania scientists has identified key steps that trigger this disintegration of cellular regulation. Their discovery—that a protein called Exo70 has a split personality—points to new possibilities for diagnosing cancer metastasis.

Advertisement

New material could make solar panels cheaper, more efficient

December 11, 2013 3:10 pm | News | Comments

A unique solar panel design made with a new ceramic material points the way to potentially providing sustainable power cheaper, more efficiently, and requiring less manufacturing time. It also reaches a four-decade-old goal of discovering a bulk photovoltaic material that can harness energy from visible and infrared light, not just ultraviolet light.

Researchers uncover mechanism behind blood stem cells’ longevity

November 26, 2013 11:38 am | News | Comments

The blood stem cells that live in bone marrow are at the top of a complex family tree. Such stem cells split and divide down various pathways that ultimately produce red cells, white cells and platelets. These “daughter” cells must be produced at a rate of about one million per second to constantly replenish the body’s blood supply. Researchers have long wondered what allows these stem cells to persist for decades, until now.

Team demonstrates new paradigm for solar cell construction

November 12, 2013 8:53 am | News | Comments

Researchers from the Univ. of Pennsylvania and Drexel Univ. have experimentally demonstrated a new method for solar cell construction which may ultimately make them less expensive, easier to manufacture and more efficient at harvesting energy from the sun. The breakthrough, which is the result of five years of focused research, relies on specifically designed perovskite crystals that deliver a “bulk” photovoltaic effect.

New method for harvesting energy from light

September 10, 2013 7:42 am | News | Comments

Researchers from the Univ. of Pennsylvania have demonstrated a new mechanism for extracting energy from light, a finding that could improve technologies for generating electricity from solar energy and lead to more efficient optoelectronic devices used in communications.

Computer model to help design flexible touchscreens

September 4, 2013 7:33 am | News | Comments

Electronic devices with touchscreens rely on transparent conductors made of indium tin oxide, or ITO. But cost and the physical limitations of this material are limiting progress in developing flexible touchscreens. A research collaboration between the Univ. of Pennsylvania and Duke Univ. is exploring the use of nanowires to replace ITO, and are using simulation tools to determine how they might work.

Advertisement

Researchers set the stage for “programmable matter” using nanocrystals

July 29, 2013 9:56 am | News | Comments

Nanoscientists who recently created beautiful, tiled patterns with flat nanocrystals faced a mystery: Why did crystals arrange themselves in an alternating, herringbone style, even though it wasn’t the simplest pattern? Help from computer simulations have given them a new tool for controlling how objects one-millionth the size of a grain of sand arrange themselves into useful materials.

A new way to study, improve catalytic reactions

July 22, 2013 9:45 am | News | Comments

Catalysts are everywhere. They make chemical reactions that normally occur at extremely high temperatures and pressures possible within factories, cars and the comparatively balmy conditions within the human body. Developing better catalysts, however, is mainly a hit-or-miss process. Now, researchers have shown a way to precisely design the active elements of a certain class of catalysts.

Researchers help show new way to study, improve catalytic reactions

July 18, 2013 4:18 pm | News | Comments

Catalysts are everywhere, but developing better catalysts is mainly a hit-or-miss process. Now, a study by researchers at the University of Pennsylvania, the University of Trieste, Italy, and Brookhaven National Laboratory has shown a way to precisely design the active elements of a certain class of catalysts, showing which parameters are most critical for improving performance.

Researchers design variant of main painkiller receptor

June 18, 2013 1:04 pm | News | Comments

Opioids are still the most effective class of painkillers, but they come with unwanted side effects. Designing new drugs of this type involves testing them on their corresponding receptors, but access to meaningful quantities of these receptors that work in experimental conditions has been a limiting factor. Now, researchers have developed a variant of the mu opioid receptor that has several advantages when it comes to experimentation.

Making new cartilage from stem cells

June 10, 2013 11:20 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Cartilage injuries have ended many athletes’ career, and the general wear-and-tear of the joint-cushioning tissue is something that almost everyone will endure as they age. Unfortunately, repairing cartilage remains difficult. Bioengineers are interested in finding innovative ways to grow new cartilage from a patient’s own stem cells. A new study from the Univ. of Pennsylvania brings such a treatment one step closer to reality.

Researchers integrate origami and engineering

June 4, 2013 1:31 pm | News | Comments

The quintessential piece of origami might be a decorative paper crane, but in the hands of an interdisciplinary Univ. of Pennsylvania research team, it could lead to a drug-delivery device, an emergency shelter or even a space station. Collaborating with researchers at Cornell Univ., the Penn team will share in a $2 million, four-year grant from the NSF’s Div. of Emerging Frontiers in Research and Innovation.

Nanoantennas help improve infrared sensing

May 20, 2013 7:52 am | News | Comments

A team of University of Pennsylvania engineers has used a pattern of nanoantennas to develop a new way of turning infrared light into mechanical action, opening the door to more sensitive infrared cameras and more compact chemical analysis techniques.

Nano-breakthrough: Solving the case of the herringbone crystal

May 13, 2013 7:54 am | News | Comments

Leading nanoscientists created beautiful, tiled patterns with flat nanocrystals, but they were left with a mystery: Why did some sets of crystals arrange themselves in an alternating, herringbone style? To find out, they turned to experts in computer simulation at the University of Michigan and the Massachusetts Institute of Technology.

Research makes advance in nanotech gene sequencing technique

May 8, 2013 8:09 am | News | Comments

The allure of personalized medicine has made new, more efficient ways of sequencing genes a top research priority. One promising technique involves reading DNA bases using changes in electrical current as they are threaded through a nanoscopic hole. Now, a team led by University of Pennsylvania physicists has used solid-state nanopores to differentiate single-stranded DNA molecules containing sequences of a single repeating base.

Nanoparticle probes could drastically drop cost of two-photon microscopy

April 22, 2013 11:09 am | News | Comments

A dye-based imaging technique known as two-photon microscopy can produce pictures of active neural structures in much finer detail than functional magnetic resonance imaging, but it requires expensive femtosecond lasers to fluoresce existing dyes. A research team at the University of Pennsylvania has developed a new kind dye that fluoresces easily and produces quality images with far less powerful lasers.

Scientists get inside look at how AIDS virus grooms its assault team

April 1, 2013 1:20 pm | News | Comments

A new study by a team of scientists defines previously unknown properties of transmitted HIV-1, the virus that causes AIDS. The viruses that successfully pass from a chronically infected person to a new individual are both remarkably resistant to a powerful initial human immune-response mechanism, and they are blanketed in a greater amount of envelope protein that helps them access and enter host cells.

Engineers enable bulk silicon to emit visible light for the first time

March 27, 2013 2:56 pm | News | Comments

Certain semiconductors, when imparted with energy, in turn emit light; they directly produce photons, instead of producing heat. This phenomenon is commonplace and used in light-emitting diodes, or LEDs. Research from the University of Pennsylvania has enabled "bulk" silicon to emit broad-spectrum, visible light for the first time, opening the possibility of using the element in devices that have both electronic and photonic components.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading