Advertisement
University of Michigan
Subscribe to University of Michigan

The Lead

Researchers develop heat-conducting plastic

November 25, 2014 8:59 pm | by Nicole Casal Moore, Univ. of Michigan | News | Comments

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a Univ. of Michigan research team has made a plastic blend that does so 10 times better than its conventional counterparts. Plastics are inexpensive, lightweight and flexible, but because they restrict the flow of heat, their use is limited in technologies like computers, smartphones, cars or airplanes.

What agricultural ecosystems on steroids are doing to the air

November 21, 2014 9:21 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a study that identifies a new, "direct fingerprint" of human activity on Earth, scientists...

Spiraling light, nanoparticles and insights into life’s structure

November 20, 2014 8:12 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

As hands come in left and right versions that are mirror images of each other, so do the amino...

Hormone points to potential treatment for metabolic disorders

November 19, 2014 8:13 am | by Laura Williams, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have discovered how a previously unknown hormone serves as...

View Sample

FREE Email Newsletter

Microbot muscles: Chains of particles assemble and flex

November 11, 2014 7:57 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a step toward robots smaller than a grain of sand, Univ. of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines. So-called microbots would be handy in many areas. But several challenges lie between current technologies and science fiction possibilities. Two of the big ones are building the bots and making them mobile.

First peek at how neurons multitask

November 10, 2014 8:01 am | by Laura Williams, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have shown how a single neuron can perform multiple functions in a model organism, illuminating for the first time this fundamental biological mechanism and shedding light on the human brain. Investigators found that a neuron in C. elegans regulates both the speed and direction in which the worm moves.

Self-driving vehicles generate enthusiasm, concerns worldwide

October 31, 2014 8:22 am | by Bernie DeGroat, Univ. of Michigan | News | Comments

Despite safety concerns about equipment failure, a majority of drivers on three continents have high expectations for autonomous vehicles. Building on an earlier study on public opinion regarding self-driving vehicles in the U.S., Great Britain and Australia, a team from the Univ. of Michigan Transportation Research Institute expanded their survey to include more than 1,700 respondents in India, China and Japan.

Advertisement

A look back in time at key events in plant evolution

October 28, 2014 8:27 am | by Jim Erickson, University of Michigan | News | Comments

Scientists from North America, Europe and China published a paper that reveals important details about key transitions in the evolution of plant life on our planet. From strange and exotic algae, trees and flowers growing deep in steamy rainforests to the grains and vegetables we eat and the ornamental plants adorning our homes, all plant life on Earth shares over a billion years of history.

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan engineers have made rounded crystals that have no facets. The team calls the crystals "nanolobes". The nanolobes' shape and the way they're made have promising applications. The geometry could potentially be useful to guide light in advanced LEDs, solar cells and non-reflective surfaces.

Gene mutation may lead to development of new cancer drugs

October 1, 2014 8:52 am | by Laura Bailey, Univ. of Michigan | News | Comments

The discovery of a gene mutation that causes a rare premature aging disease could lead to the development of drugs that block the rapid, unstoppable cell division that makes cancer so deadly. Scientists at the Univ. of Michigan recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can't regenerate and make new blood.

New discovery approach accelerates identification of potential cancer treatments

September 30, 2014 9:50 am | by Laura Williams, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have described a new approach to discovering potential cancer treatments that requires a fraction of the time needed for more traditional methods. They used the platform to identify a novel antibody that is undergoing further investigation as a potential treatment for breast, ovarian and other cancers.

The water in your bottle might be older than the sun

September 26, 2014 8:13 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

Up to half of the water on Earth is likely older than the solar system itself, Univ. of Michigan astronomers theorize. The researchers' work helps to settle a debate about just how far back in galactic history our planet and our solar system's water formed. Were the molecules in comet ices and terrestrial oceans born with the system itself—in the planet-forming disk of dust and gas that circled the young sun 4.6 billion years ago?

Advertisement

Live long and phosphor: Blue LED breakthrough for efficient electronics

September 25, 2014 8:36 am | News | Comments

Blue organic light-emitting diodes (OLEDs) are one of a trio of colors used in OLED displays such as smartphone screens and high-end TVs. In a step that could lead to longer battery life in smartphones and lower power consumption for large-screen televisions, researchers at the Univ. of Michigan have extended the lifetime of blue organic light emitting diodes by a factor of 10.

Muscular dystrophy: Repair the muscles, not the genetic defect

September 16, 2014 7:52 am | by Laura Bailey, Univ. of Michigan | News | Comments

A potential way to treat muscular dystrophy directly targets muscle repair instead of the underlying genetic defect that usually leads to the disease. Muscular dystrophies are a group of muscle diseases characterized by skeletal muscle wasting and weakness. Mutations in certain proteins, most commonly the protein dystrophin, cause muscular dystrophy in humans and also in mice.

Faster image processing for low-radiation CT scans

September 12, 2014 8:08 am | by Kate McAlpine, Univ. of Michigan | Videos | Comments

A new $1.9 million study at the Univ. of Michigan seeks to make low-dose computed tomography scans a viable screening technique by speeding up the image reconstruction from half an hour or more to just five minutes. The advance could be particularly important for fighting lung cancers, as symptoms often appear too late for effective treatment.

Sunlight controls the fate of carbon released from thawing Arctic permafrost

August 22, 2014 9:20 am | by Bernie DeGroat, Univ. of Michigan | News | Comments

Just how much Arctic permafrost will thaw in the future and how fast heat-trapping carbon dioxide will be released from those warming soils is a topic of lively debate among climate scientists. To answer those questions, scientists need to understand the mechanisms that control the conversion of organic soil carbon into carbon dioxide gas. Until now, researchers believed that bacteria were largely responsible.

Nuclear reactor reliability: Fast test proves viable

August 21, 2014 8:12 am | by Kate McAlpine, Univ. of Michigan | News | Comments

A speedy way to mimic the aging of materials inside nuclear reactors has matched all aspects of the damage sustained by a real reactor component for the first time. The method could help the U.S. and other countries stay ahead of potential problems in reactors that run for 40 years or more and also test materials for building advanced reactors.

Advertisement

Many patients don’t understand electronic lab results

August 20, 2014 10:48 am | by Laurel Thomas Gnagey, Univ. of Michigan | News | Comments

While it's becoming commonplace for patients to see the results of laboratory work electronically, a new Univ. of Michigan study suggests that many people may not be able to understand what those numbers mean. The research found that people with low comprehension of numerical concepts—or numeracy—and low literacy skills were less than half as likely to understand whether a result was inside or outside the reference ranges.

A breath reveals anti-counterfeit drug labels

August 6, 2014 7:48 am | by Kate McAlpine, Univ. of Michigan | News | Comments

An outline of Marilyn Monroe's iconic face appeared on the clear, plastic film when a researcher fogs it with her breath. Terry Shyu, a doctoral student in chemical engineering at the Univ. of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don't envision movie stars on medicine bottles, they used Monroe's image to prove their concept.

Researchers find protein that fuels repair of treatment-resistant cancer cells

July 31, 2014 8:06 am | by Laura Bailey, Univ. of Michigan | News | Comments

Imagine you're fighting for your life but no matter how hard you hit, your opponent won't go down. The same can be said of highly treatment-resistant cancers, such as head and neck cancer, where during radiation and chemotherapy some cancer cells repair themselves, survive and thrive. Head and neck cancer is the sixth most common cancer in the world, but the late detection and treatment resistance result in a high mortality rate.

All HIV not created equal: Scientists can identify which viruses cause infection

July 21, 2014 8:07 am | by Laura Bailey, Univ. of Michigan | News | Comments

HIV-infected people carry many different HIV viruses and all have distinct personalities—some much more vengeful and infectious than others. Yet, despite the breadth of infectivity, roughly 76% of HIV infections arise from a single virus. Now, scientists believe they can identify the culprit with very specific measurements of the quantities of a key protein in the HIV virus.

Toward ultimate light efficiency on the cheap

July 17, 2014 9:27 am | by Kate McAlpine, Univ. of Michigan | News | Comments

Researchers have taken a major stride toward perfectly efficient lighting that is also relatively inexpensive and simple to make. The same material can also reveal the presence of water by changing color. Incandescent bulbs only turn 5% of the electricity they use into light, while fluorescent LEDs can produce light from up to 25% of the electrons that pass through them. Phosphorescent LEDs can turn every electron into a ray of light.

Deep within spinach leaves, vibrations enhance efficiency of photosynthesis

July 14, 2014 7:46 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

Biophysics researchers have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet. The findings could potentially help engineers make more efficient solar cells and energy storage systems.

Metal particles in solids aren’t as fixed as they seem

June 25, 2014 8:04 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In work that unmasks some of the magic behind memristors and "resistive random access memory," or RRAM, researchers have shown that the metal particles in memristors don't stay put as previously thought. The findings have broad implications for the semiconductor industry and beyond. They show, for the first time, exactly how some memristors remember.

Nature’s chem lab: How microorganisms manufacture drugs

June 19, 2014 8:25 am | by Jim Erickson, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have obtained the first 3-D snapshots of the "assembly line" within microorganisms that naturally produces antibiotics and other drugs. Understanding the complete structure and movement within the molecular factory gives investigators a solid blueprint for redesigning the microbial assembly line to produce novel drugs of high medicinal value.

NIST technique could make sub-wavelength images at radio frequencies

June 17, 2014 11:14 am | by Laura Ost, NIST | News | Comments

Imaging and mapping of electric fields at radio frequencies (RF) currently requires the use of metallic structures such as dipoles, probes and reference antennas. To make such measurements efficiently, the size of these structures needs to be on the order of the wavelength of the RF fields to be mapped. This poses practical limitations on the smallest features that can be measured.

If global warming is real, why was it so cold and snowy last winter?

June 13, 2014 10:23 am | by Greta Guest, Univ. of Michigan | News | Comments

More Americans view global warming by what they see outside their windows and not scientific evidence, according to a Univ. of Michigan survey. While a majority of Americans still believe that global warming is occurring, the cold and snowy winter of 2014 created more disbelievers, according to the National Surveys on Energy and Environment.

Research universities form technology consortium to share content

June 12, 2014 7:37 am | by Kim Broekuizen, Univ. of Michigan | News | Comments

Four major U.S. research universities have formed a technology consortium to improve the way in which educational content is shared across universities and ultimately delivered to students. Unizin will provide a common digital infrastructure that will allow member universities to work together to strengthen their traditional missions of education and research using the most innovative technology available today.

A new way to make laser-like beams using 250x less power

June 6, 2014 9:03 am | News | Comments

With precarious particles called polaritons that straddle the worlds of light and matter, Univ. of Michigan researchers have demonstrated a new, practical and potentially more efficient way to make a coherent laser-like beam. They have made what's believed to be the first polariton laser that is fueled by electrical current as opposed to light, and also works at room temperature, rather than way below zero.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading