Advertisement
University of California, Los Angeles
Subscribe to University of California, Los Angeles
View Sample

FREE Email Newsletter

Scientists analyze genetic makeup of human, mouse embryos in unprecedented detail

July 31, 2013 9:22 am | by Shaun Mason, UCLA | News | Comments

In collaboration with teams in China, researchers in California have used the technology of single-cell RNA sequencing to track the genetic development of a human and a mouse embryo at a high level of accuracy. The technique could lead to earlier and more accurate diagnoses of genetic diseases, even when the embryo consists of only eight cells.

Computer scientists develop mathematical jigsaw puzzles to encrypt software

July 30, 2013 9:28 am | by Matthew Chin, UCLA | News | Comments

A team of researchers at the Univ. of California, Los Angeles have designed a system to encrypt software so that it only allows someone to use a program as intended while preventing any deciphering of the code behind it. This is known in computer science as "software obfuscation," and it is the first time it has been accomplished.

Materials scientists reveal organizing principles for design of nanoscopic materials

July 3, 2013 8:57 am | News | Comments

The ultimate dream come true for material scientists is to have the ability to make materials that can take on properties and behaviors to best suit our needs. But scientists first must truly understand the properties of cluster assembly through the individual cluster. Now, material scientists will have greater insight into the organizing principles that allow for the design of nanoscopic materials with specific band gap energy.

Advertisement

Common gene known to cause inherited autism now linked to specific behaviors

June 4, 2013 8:54 am | News | Comments

The genetic malady known as Fragile X syndrome is the most common cause of inherited autism and intellectual disability. Brain scientists know the gene defect that causes the syndrome and understand the damage it does in misshaping the brain's synapses—the connections between neurons. But how this abnormal shaping of synapses translates into abnormal behavior is unclear. Now, researchers believe they know.

Bacteria organize according to "rich-get-richer" principle

May 10, 2013 11:16 am | News | Comments

Bacteria on a surface wander around and often organize into highly resilient communities known as biofilms. It turns out that they organize in a rich-get-richer pattern similar to the distribution of wealth in the U.S. economy, according to a new study.

Bioengineers simplify fluid flows by removing complex math

May 8, 2013 8:42 am | News | Comments

A research team led by UCLA bioengineers has developed a way to program and control the shape of fluids flowing through pipes or conduits without the need to solve complex and time-consuming fluid-motion equations. This strategy could allow researchers to tap the vast, unrealized potential of fluid-flow applications.

Study shows that individual brain cells track where we are, how we move

May 3, 2013 9:36 am | News | Comments

Leaving the house in the morning may seem simple, but with every move we make, our brains are working to create maps of the outside world that allow us to navigate and remember where we are. Ultimately, the brain constructs its own pinpoint geographical chart that is far more precise than anything you'd find on Google Maps. But just how neurons make these maps of space has fascinated scientists for decades. Until now.

Scientists find way to monitor elusive collisions in space

April 24, 2013 9:10 am | News | Comments

Many collisions occur between asteroids and other objects in our solar system, but scientists are not always able to detect or track these impacts from Earth. Space scientists at the University of California, Los Angeles have now devised a way to monitor these types of collisions in interplanetary space by using a new method to determine the mass of magnetic clouds that result from the impacts.

Advertisement

Researchers capture wasted heat, use it to power devices

April 23, 2013 11:37 am | by Matthew Chin and Bill Kisliuk, UCLA | News | Comments

Excess heat, like that generated by extended use of a computer or other device, naturally creates what is known as a spin wave that can move a domain wall, the dividing line between magnetic materials that point in different directions. Using this phenomenon, scientists in California have demonstrated how to add power to a spintronics device using electron spin rather than electron charge.

Nanodiamonds could improve effectiveness of breast cancer treatment

April 16, 2013 7:50 am | News | Comments

Doctors have begun to categorize breast cancers into four main groups according to the genetic makeup of the cancer cells. Which category a cancer falls into generally determines the best method of treatment. But cancers in one of the four groups—called "basal-like" or "triple-negative" breast cancer (TNBC)—have been particularly tricky to treat. Researchers have developed a potential treatment for TNBC that uses nanodiamonds.

Engineers craft material for high-performance supercapacitor

April 15, 2013 8:01 am | News | Comments

Taking a significant step toward improving the power delivery of systems ranging from urban electrical grids to regenerative braking in hybrid vehicles, researchers at the University of California, Los Angeles have synthesized a material that shows high capability for both the rapid storage and release of energy.

Scientists map elusive 3D structure of telomerase enzyme

April 12, 2013 9:30 am | News | Comments

Like finally seeing all the gears of a watch and how they work together, researchers from the University of California, Los Angeles and the University of California, Berkeley have, for the first time ever, solved the puzzle of how the various components of an entire telomerase enzyme complex fit together and function in a 3D structure.

Imaging in 3D reveals never-before-seen defects in platinum nanoparticle

March 28, 2013 12:49 am | News | Comments

A team of scientists in the United States has combine three different imaging methods to produce 3D images and videos of a tiny platinum nanoparticle at atomic resolution that reveal new details of defects in nanomaterials that have not been seen before. Prior to this work, scientists only had flat, two-dimensional images with which to view the arrangement of atoms.

Advertisement

Atomic layer etch analysis accelerates green chemistries

March 26, 2013 8:28 am | News | Comments

Researchers sponsored by Semiconductor Research Corporation (SRC) have developed a modeling process designed to simulate atomic-level etching with chemicals that are effective alternatives to widely used perfluorocarbon (PFC) gases. The novel approach will identify and evaluate green plasma chemistries for processing emerging memory/logic devices and through-silicon-via (TSV)-enabled technologies for the semiconductor industry.

Experts propose new structure to guide geoengineering research

March 15, 2013 11:16 am | News | Comments

Geoengineering, the use of human technologies to alter the Earth's climate system has emerged as a potentially promising way to mitigate the impacts of climate change. But such efforts could present unforeseen new risks. That inherent tension, argue two professors, has thwarted both scientific advances and the development of an international framework for regulating and guiding geoengineering research.

Researchers develop new method of controlling nanodevices

February 25, 2013 9:46 am | by Bill Kisliuk, UCLA | News | Comments

Electromagnetic devices, from power drills to smart-phones, require an electric current to create the magnetic fields that allow them to function. But researchers at the University of California, Los Angeles have developed a method for switching tiny magnetic fields on and off with an electric field—a sharp departure from the traditional approach of running a current through a wire. The new composite can control magneto-electric activity at a scale of just 10 nm.

Technique developed to scale up production of graphene microsupercapacitors

February 20, 2013 8:34 am | News | Comments

While the demand for ever-smaller electronic devices has spurred the miniaturization of a variety of technologies, one area has lagged behind in this downsizing revolution: energy storage units, such as batteries and capacitors. Now, a team from University of California, Los Angeles may have changed the game by developing a groundbreaking technique that uses a DVD burner to fabricate microscale graphene-based supercapacitors.

Nanoscale vehicle battles cancer

February 6, 2013 3:38 pm | News | Comments

A tiny capsule invented at a University of California, Los Angeles laboratory could go a long way toward improving cancer treatment. Devising a method for more precise and less invasive treatment of cancer tumors, the team has developed a degradable nanoscale shell to carry proteins to cancer cells and stunt the growth of tumors without damaging healthy cells.

Nanolens microscopes can detect viruses at nanoscale

January 21, 2013 7:35 am | News | Comments

By using tiny liquid lenses that self-assemble around microscopic objects, a team from University of California, Los Angeles has created an optical microscopy method that allows users to directly see objects more than 1,000 times smaller than the width of a human hair.

Scientists capture, preserve cancer cells circulating in blood

December 17, 2012 3:11 pm | News | Comments

Researchers in Japan and California have built a nanoscale Velcro-like device that captures and releases tumor cells that have broken away from primary tumors and are circulating in the bloodstream. This new nanotechnology could be used for cancer diagnosis and give insight into the mechanisms of how cancer spreads throughout the body.

Engineers develop energy-efficient memory using magnetic materials

December 17, 2012 8:03 am | News | Comments

By using electric voltage instead of a flowing electric current, researchers from the University of California, Los Angeles have made major improvements to an ultrafast, high-capacity class of computer memory known as magnetoresistive random access memory, or MRAM. The team's improved memory, which they call MeRAM for magnetoelectric random access memory, has great potential to be used in future memory chips for almost all electronic applications.  

Got food allergies? Test your meal on the spot

December 14, 2012 9:48 am | News | Comments

Are you allergic to peanuts and worried there might be some in that cookie? Now you can find out using a rather unlikely source: your cell phone. A team of researchers from the University of California, Los Angeles has developed a lightweight device called the iTube, which attaches to a common cell phone to detect allergens in food samples.

Comet collisions every six seconds explain 17-year-old stellar mystery

November 9, 2012 1:04 pm | News | Comments

Every six seconds, for millions of years, comets have been colliding with one another near a star in the constellation Cetus called 49 CETI, which is visible to the naked eye. Over the past three decades, astronomers have discovered hundreds of dusty disks around stars, but only two—49 CETI is one—have been found that also have large amounts of gas orbiting them. Until now, the answer was unclear as to why.

Engineers control thousands of cells simultaneously using magnetic nanoparticles

October 16, 2012 8:57 am | News | Comments

Using clusters of tiny magnetic particles about 1,000 times smaller than the width of a human hair, researchers from University of California, Los Angeles have shown that they can manipulate how thousands of cells divide, morph, and develop finger-like extensions. The tool can be used in developmental biology to understand how tissues develop.

Scientists uncover virus with potential to stop pimples

September 26, 2012 6:18 am | News | Comments

Watch out, acne. Doctors soon may have a new weapon against zits: A harmless virus living on our skin that naturally seeks out and kills the bacteria that cause pimples. In the new findings, scientists looked at two little microbes that share a big name: Propionibacterium acnes , a bacterium thriving in our pores that can trigger acne, and P. acnes phages, a family of viruses that live on human skin.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading