Advertisement
Stanford University
Subscribe to Stanford University
View Sample

FREE Email Newsletter

Designer glue improves lithium-ion battery life

August 20, 2013 8:11 am | News | Comments

When it comes to improving the performance of lithium-ion batteries, no part should be overlooked; not even the glue that binds materials together in the cathode, researchers at SLAC National Accelerator Laboratory and Stanford Univ. have found. Tweaking that material, which binds lithium sulfide and carbon particles together, created a cathode that lasted five times longer than earlier designs.

New analysis shows how proteins shift into working mode

August 8, 2013 11:01 am | News | Comments

In an advance that will help scientists design and engineer proteins, a team including researchers from SLAC National Accelerator Laboratory and Stanford Univ. has found a way to identify how protein molecules flex into specific atomic arrangements required to catalyze chemical reactions essential for life.

Disorder can improve performance of plastic solar cells

August 7, 2013 7:48 am | by Mark Shwartz, Stanford University | News | Comments

Scientists have spent decades trying to build flexible plastic solar cells efficient enough to compete with conventional cells made of silicon. To boost performance, research groups have tried creating new plastic materials that enhance the flow of electricity through the solar cell. Recently, scientists discovered that disorder at the molecular level actually improves the polymers' performance.

Advertisement

Scientists make first direct images of topological insulator’s edge currents

June 17, 2013 1:57 pm | News | Comments

Researchers have made the first direct images of electrical currents flowing along the edges of a topological insulator. In these strange solid-state materials, currents flow only along the edges of a sample while avoiding the interior. Using an exquisitely sensitive detector they built, the team was able to sense the weak magnetic fields generated by the edge currents and tell exactly where the currents were flowing.

Man-made material shows magnetic personality

June 10, 2013 7:39 am | News | Comments

Scientists from SLAC National Accelerator Laboratory and Stanford Univ. have used finely tuned x-rays at the Stanford Synchrotron Radiation Lightsource to pin down the source of a mysterious magnetism that appears when two materials are sandwiched together. Why is this mysterious? Neither material shows a hint of magnetism on its own.

Study: Earthquake acoustics can indicate if a massive tsunami is imminent

June 7, 2013 12:07 pm | by Bjorn Carey, Stanford University | News | Comments

On March 11, 2011, a magnitude 9.0 undersea earthquake occurred 43 miles off the shore of Japan. It generated an unexpectedly massive tsunami that washed over eastern Japan roughly 30 minutes later. Scientists at Stanford University have identified key acoustic characteristics of this quake that indicated it would cause a large tsunami.

Simple wavelength detector could speed data communications

June 5, 2013 7:40 am | News | Comments

Researchers at SLAC National Accelerator Laboratory and Stanford Univ. have created a new device, smaller than a grain of rice, that could streamline optical data communications. It can directly identify the wavelength of light that hits it, and should scale down to the even tinier dimensions needed for multichannel optical data receivers on future generations of computer chips.

Scientists create novel silicon electrodes to improve lithium-ion batteries

June 4, 2013 7:55 am | News | Comments

Stanford Univ. scientists have dramatically improved the performance of lithium-ion batteries by creating novel electrodes made of silicon and conducting polymer hydrogel, a spongy material similar to that used in contact lenses and other household products. The scientists developed a new technique for producing low-cost, silicon-based batteries with potential applications for a wide range of electrical devices.

Advertisement

Printing innovations provide ten-fold improvement in organic electronics

June 3, 2013 8:06 am | News | Comments

SLAC National Accelerator Laboratory and Stanford Univ. researchers have developed a new printing process for organic thin-film electronics that results in films of strikingly higher quality. The printing process called FLUENCE—fluid-enhanced crystal engineering—results in thin films capable of conducting electricity 10 times more efficiently than those created using conventional methods.

Researchers develop high-efficiency zinc-air battery

May 30, 2013 7:59 am | News | Comments

Stanford University scientists have developed an advanced zinc-air battery with higher catalytic activity and durability than similar batteries made with costly platinum and iridium catalysts. The results could lead to the development of a low-cost alternative to conventional lithium-ion batteries widely used today.

Computational tool simplifies complex data into 2D images

May 20, 2013 9:30 am | News | Comments

Researchers at Columbia University and Stanford University have developed a computational method that enables scientists to visualize and interpret "high-dimensional" data produced by single-cell measurement technologies such as mass cytometry. A sophisticated algorithm converts difficult-to-interpret data into visual representations similar to two-dimensional "scatter plots".

Study: Earth's iron core is surprisingly weak

May 17, 2013 10:54 am | News | Comments

The massive ball of iron sitting at the center of Earth is not quite as "rock-solid" as has been thought, say two Stanford University mineral physicists. By conducting experiments that simulate the immense pressures deep in the planet's interior, the researchers determined that iron in Earth's inner core is only about 40% as strong as previous studies estimated.

Ultraresponsive magnetic nanoscavengers could usher next-generation water purification

May 15, 2013 3:43 pm | by Andrew Myers, Stanford University | News | Comments

Among its many talents, silver is an antibiotic. Titanium dioxide is known to glom on to certain heavy metals and pollutants. Other materials do the same for salt. In recent years, environmental engineers have sought to disinfect, depollute, and desalinate contaminated water using nanoscale particles of these active materials. Engineers call them nanoscavengers.

Advertisement

Engineers monitor heart health using paper-thin flexible 'skin'

May 15, 2013 3:21 pm | News | Comments

Engineers combine layers of flexible materials into pressure sensors to create a wearable heart monitor thinner than a dollar bill. The skin-like device could one day provide doctors with a safer way to check the condition of a patient's heart.

Ultrathin transistors spread like butter on toast

April 18, 2013 8:37 am | by Anne Ju, Cornell University | News | Comments

Like spreading a thin layer of butter on toast, Cornell University scientists have helped develop a novel process of spreading extremely thin organic transistors, and used synchrotron X-rays to watch how the films crystallize. The coating procedure, called solution shearing, is like the buttering of a slice of toast.

Researchers turn skin cells directly into the cells that insulate neurons

April 15, 2013 1:00 pm | News | Comments

Stanford University School of Medicine scientists have succeeded in transforming skin cells directly into oligodendrocyte precursor cells, the cells that wrap nerve cells in the insulating myelin sheaths that help nerve signals propagate. The research was done in mice and rats, but if the approach also works with human cells, it could eventually lead to cell therapies for a variety of diseases of the nervous system.

Exploring the ethics of resurrecting extinct species

April 8, 2013 6:09 pm | by Thomas Sumner and Bjorn Carey, Stanford University | News | Comments

At some point, scientists may be able to bring back extinct animals, and perhaps early humans, raising questions of ethics and environmental disruption. Stanford University law professor Hank Greely has recently identified the ethical landmines of this new concept of de-extinction.

Global solar photovoltaic industry is likely now a net energy producer

April 3, 2013 8:12 am | News | Comments

The construction of the photovoltaic power industry since 2000 has required an enormous amount of energy, mostly from fossil fuels. The good news is that the clean electricity from all the installed solar panels has likely just surpassed the energy going into the industry's continued growth, Stanford University researchers find.

X-ray laser explores how to write data with light

March 21, 2013 7:52 am | News | Comments

Using laser light to read and write magnetic data by quickly flipping tiny magnetic domains could help keep pace with the demand for faster computing devices. Now experiments with SLAC National Accelerator Laboratory's Linac Coherent Light Source X-ray laser have given scientists their first detailed look at how light controls the first trillionth of a second of this process, known as all-optical magnetic switching.

High-resolution endoscope is as thin as a human hair

March 13, 2013 10:09 am | by Andrew Myers, Stanford University | News | Comments

Engineers at Stanford have developed a prototype single-fiber endoscope that improves the resolution of these much-sought-after instruments fourfold over existing designs. This so-called micro-endoscope can resolve objects just 2.5 micrometers in size and could lead to an era of needle-thin, minimally invasive endoscopes able to view features out of reach of today’s instruments.

Researchers identify forerunners of inner-ear cells that enable hearing

February 26, 2013 9:47 am | News | Comments

Researchers at the Stanford University School of Medicine have identified a group of progenitor cells in the inner ear that can become the sensory hair cells and adjacent supporting cells that enable hearing. Studying these progenitor cells could someday lead to discoveries that help millions of Americans suffering from hearing loss due to damaged or impaired sensory hair cells.

Researchers develop tool for reading the minds of mice

February 19, 2013 3:41 pm | News | Comments

If you want to read a mouse's mind, it takes some fluorescent protein and a tiny microscope implanted in the rodent's head. Stanford University scientists have demonstrated a technique for observing hundreds of neurons firing in the brain of a live mouse, in real time, and have linked that activity to long-term information storage. The work could provide a useful tool for studying new therapies for neurodegenerative diseases, such as Alzheimer's.

Light-emitting bioprobe fits in a single cell

February 14, 2013 8:04 am | News | Comments

A Stanford University study is the first to demonstrate that sophisticated, engineered light resonators can be inserted inside cells without damaging the host. The researchers say it marks a new age in which tiny lasers and light-emitting diodes yield new avenues in the study and influence of living cells.

Researchers break million-core supercomputer barrier

January 28, 2013 10:18 am | by Andrew Myers, Stanford University | News | Comments

Stanford Engineering's Center for Turbulence Research has set a new record in computational science by successfully using a supercomputer with more than one million computing cores to solve a complex fluid dynamics problem—the prediction of noise generated by a supersonic jet engine.

Reduce greenhouse gas by exporting coal?

January 16, 2013 9:36 am | News | Comments

Western U.S. coal companies looking to expand sales to China will likely succeed, according to Stanford University economist Frank Wolak. But, due to energy market dynamics in the United States, those coal exports are likely to reduce global emissions of greenhouse gases.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading