Advertisement
Northwestern University
Subscribe to Northwestern University

The Lead

Terahertz device could strengthen security

November 24, 2014 11:12 am | by Northwestern Univ. | News | Comments

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures are making us any safer. Now a new type of security detection that uses terahertz radiation is looking to prove its promise.

New process isolates promising material

November 13, 2014 11:11 am | by Amanda Morris, Northwestern Univ. | News | Comments

After graphene was first produced in the laboratory in 2004, thousands of laboratories began...

Self-assembled membranes hint at biomedical applications

October 28, 2014 11:36 am | by David Lindley, Argonne National Laboratory | News | Comments

Techniques for self-assembling of molecules have grown increasingly sophisticated, but...

Skin-like device monitors cardiovascular, skin health

September 25, 2014 9:09 am | by Megan Fellman, Northwestern Univ. | News | Comments

A new wearable medical device can quickly alert a person if they are having cardiovascular...

View Sample

FREE Email Newsletter

New glaucoma cause discovered

September 15, 2014 10:57 am | by Marla Paul, Northwestern Univ. | News | Comments

Northwestern Medicine scientists have discovered a novel cause of glaucoma in an animal model, and related to their findings, are now developing an eye drop aimed at curing the disease. They believe their findings will be important to human glaucoma. A cure for glaucoma, a leading cause of blindness in the U.S., has been elusive because the basis of the disease is poorly understood.

Breakthrough for carbon nanotube solar cells

September 3, 2014 11:47 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lighter, more flexible and cheaper than conventional solar-cell materials, carbon nanotubes (CNTs) have long shown promise for photovoltaics. But research stalled when CNTs proved to be inefficient, converting far less sunlight into power than other methods. Now a research team has created a new type of CNT solar cell that is twice as efficient as its predecessors.  

Single laser stops molecular tumbling motion instantly

September 2, 2014 8:26 am | News | Comments

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern Univ. scientists have figured out an elegant way to stop a molecule from tumbling so that its potential for new applications can be harnessed: shine a single laser on a trapped molecule and it instantly cools to the temperature of outer space, stopping the rotation of the molecule.

Advertisement

Biomarker in aggressive breast cancer identified

August 20, 2014 7:53 am | by Megan Fellman, Northwestern Univ. | News | Comments

Two Northwestern Univ. scientists have identified a biomarker strongly associated with basal-like breast cancer, a highly aggressive carcinoma that is resistant to many types of chemotherapy. The biomarker, a protein called STAT3, provides a smart target for new therapeutics designed to treat this often deadly cancer.

Antioxidant biomaterial promotes healing

July 25, 2014 6:55 am | News | Comments

When a foreign material like a medical device or surgical implant is put inside the human body, the body usually reacts negatively. For the first time ever, researchers at Northwestern Univ. have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

New evidence for oceans deep in the Earth

June 13, 2014 7:59 am | by Megan Fellman, Northwestern Univ. | News | Comments

Researchers report evidence for an oceans worth of water deep beneath the U.S. Though not in the familiar liquid form—the ingredients for water are bound up in rock deep in the Earth’s mantle—the discovery may represent the planet’s largest water reservoir. The presence of liquid water on the surface is what makes our “blue planet” habitable, and scientists have tried to figure out just how much water may be cycling between Earth’s surface.

Designing ion “highway systems” for batteries

June 10, 2014 2:19 pm | News | Comments

Since the early 1970s, lithium has been the most popular element for batteries because of it’s low weight and good electrochemical potential. But it is also highly flammable. Researchers have recently married two traditional theories in materials science that can explain how the charge dictates the structure of the material. And using this they may be able to move to other materials, such as block copolymers, for use in batteries.

Advertisement

Team demonstrates continuous terahertz sources at room temperature

June 5, 2014 11:47 am | News | Comments

The potential of terahertz waves has yet to be reached because they are difficult to generate and manipulate. Current sources are large devices that require complex vacuum, lasers and cooling systems. A Northwestern Univ. team is the first to produce terahertz radiation in a simplified system. Their room-temperature, compact, continuous terahertz radiation source is six times more efficient than previous systems.

Taking the lead out of a promising solar cell

May 6, 2014 7:32 am | News | Comments

Northwestern Univ. researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using "bench" chemistry, with no fancy equipment or hazardous materials.

Experimental drug prolongs life span in mice

May 2, 2014 11:30 am | by Marla Paul, Northwestern Univ. | News | Comments

Northwestern Medicine scientists have newly identified a protein’s key role in cell and physiological aging and have developed—in collaboration with Tohoku Univ. in Japan—an experimental drug that inhibits the protein’s effect and prolonged the lifespan in a mouse model of accelerated aging. The rapidly aging mice fed the experimental drug lived more than four times longer than a control group.

Ozone levels drop 20% with switch from ethanol to gasoline

April 29, 2014 9:35 am | by Megan Fellman, Northwestern Univ. | News | Comments

A Northwestern Univ. study by an economist and a chemist reports that when fuel prices drove residents of São Paulo, Brazil, to mostly switch from ethanol to gasoline in their flexible-fuel vehicles, local ozone levels dropped 20%. At the same time, nitric oxide and carbon monoxide concentrations tended to go up.

Surprising material could play role in saving energy

April 18, 2014 7:56 am | by Megan Fellman, Northwestern Univ. | News | Comments

One strategy for addressing the world’s energy crisis is to stop wasting so much energy when producing and using it, which can happen in coal-fired power plants or transportation. Nearly two-thirds of energy input is lost as waste heat. Now Northwestern Univ. scientists have discovered a surprising material that is the best in the world at converting waste heat to useful electricity.

Advertisement

Expanding particles to engineer defects

April 8, 2014 10:41 am | by Amanda Morris, Northwestern Univ. | News | Comments

Materials scientists have long known that introducing defects into 3-D materials can improve their mechanical and electronic properties. Now a new Northwestern Univ. study finds how defects affect 2-D crystalline structures, and the results hold information for designing new materials.

Silver linings

February 25, 2014 8:48 am | by Justin H.S. Breaux, Argonne National Laboratory | News | Comments

Researchers at Argonne National Laboratory in collaboration with scientists at Northwestern Univ. are the first to grow graphene on silver which, until now, posed a major challenge to many in the field. Part of the issue has to do with the properties of silver, the other involves the process by which graphene is grown.

Molecular traffic jam makes water move faster through nanochannels

February 6, 2014 12:40 pm | News | Comments

Cars inch forward slowly in traffic jams, but molecules, when jammed up, can move extremely fast. New research by Northwestern Univ. researchers finds that water molecules traveling through tiny carbon nanotube pipes do not flow continuously but rather intermittently, like stop-and-go traffic, with unexpected results.

Detecting chemicals, measuring strain with a pencil and paper

January 23, 2014 7:40 am | News | Comments

Sometimes solving a problem doesn’t require a high-tech solution. Sometimes, you have to look no farther than your desktop. Three students from Northwestern Univ.’s McCormick School of Engineering have proven that pencils and regular office paper can be used to create functional devices that can measure strain and detect hazardous chemical vapors.

Using air transportation data to predict pandemics

December 13, 2013 8:53 am | News | Comments

Computational work conducted at Northwestern Univ. has led to a new mathematical theory for understanding the global spread of epidemics. The resulting insights could not only help identify an outbreak’s origin but could also significantly improve the ability to forecast the global pathways through which a disease might spread.

Making a gem of a tiny crystal

December 2, 2013 8:34 am | News | Comments

Nature builds flawless diamonds, sapphires and other gems. Now a Northwestern Univ. research team is the first to build near-perfect single crystals out of nanoparticles and DNA, using the same structure favored by nature. The research group developed the “recipe” for using nanomaterials as atoms, DNA as bonds and a little heat to form tiny crystals. This single-crystal recipe builds on superlattice techniques.

Newly identified protein provides target for antibiotic-resistant hospital bacterium

November 27, 2013 8:49 am | News | Comments

Researchers have made inroads into tackling a bacterium that plagues hospitals and is highly resistant to most antibiotics. They determined the 3-D structure and likely function of a new protein in this common bacterium that attacks those with compromised immune systems.

Researchers grow graphene on silver

November 18, 2013 1:56 pm | by Sarah Ostman, Northwestern Univ. | News | Comments

Northwestern Univ. and Argonne National Laboratory scientists have recently overcome problems with growing graphene on chemically inert substrates, demonstrating the first growth of graphene on a single-crystal silver substrate. Their method could advance graphene-based optical devices and enable the interfacing of graphene with other two-dimensional materials.

Researchers measure flow from a nanoscale fluid jet

October 28, 2013 2:52 pm | News | Comments

Fluid jets are all around us: from inkjet printing, to the “Old Faithful” geyser in Yellowstone National Park, to cosmological jets several thousand light years long. A team of researchers has recently verified the classical Landau-Squire theory in the tiniest submerged jet. The diameter of their jets were in the range of 20 to 150 nm, which is the length of just a few hundred water molecules lined up in a row.

Atomically thin device promises new class of electronics

October 22, 2013 8:05 am | News | Comments

As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually 2-D materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge. Northwestern Univ. researchers have now taken a significant step toward fabricating complex nanoscale electronics.

Researchers develop compact, high-power terahertz source at room temperature

October 10, 2013 8:38 am | News | Comments

Terahertz radiation is gaining attention due to its many applications. Traditional methods of generating terahertz radiation, however, usually involve large and expensive instruments, some of which also require cryogenic cooling. A compact terahertz source operating at room temperature with high power has been a dream device in the terahertz community for decades. A team from Northwestern Univ. has now brought this dream closer to reality.

A new paradigm for nanoscale-resolution MRI

September 30, 2013 8:01 am | News | Comments

A team from the Univ. of Illinois at Urbana-Champaign and Northwestern Univ. has devised a novel nuclear magnetic resonance imaging (MRI) technique that delivers a roughly 10-nm spatial resolution. This represents a significant advance in MRI sensitivity as modern MRI techniques yield spatial resolutions on the millimeter length scale, with the highest-resolution experimental instruments giving spatial resolution of a few micrometers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading