Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Nanoparticles, made to order

July 2, 2013 8:03 am | by Anne Trafton, MIT News Office | News | Comments

A new coating technology developed at Massachusetts Institute of Technology, combined with a novel nanoparticle-manufacturing technology developed at the Univ. of North Carolina at Chapel Hill, may offer scientists a way to quickly mass-produce tailored nanoparticles that are specially coated for specific applications, including medicines and electronics.

Pruning the power grid

July 1, 2013 8:08 am | by Jennifer Chu, MIT News Office | News | Comments

Each summer, power grids are pushed to their limits. A single failure in the system can cause power outages throughout a neighborhood or across towns. To help prevent smaller incidents from snowballing into massive power failures, researchers devised an algorithm that identifies the most dangerous pairs of failures among the millions possible in a power grid.

Breaking habits before they start

June 28, 2013 9:46 am | by Anne Trafton, MIT News Office | News | Comments

Our daily routines can become so ingrained that we perform them automatically, such as taking the same route to work every day. Some behaviors, such as smoking or biting your fingernails, become so habitual that we can’t stop even if we want to. Although breaking habits can be hard, Massachusetts Institute of Technology neuroscientists have now shown that they can prevent them from taking root in the first place.


Low-power WiFi system tracks humans, even behind walls

June 28, 2013 9:14 am | by Helen Knight, MIT News correspondent | News | Comments

Researchers have long attempted to build a device capable of seeing people through walls. However, previous efforts to develop such a system have involved the use of expensive and bulky radar technology that uses a part of the electromagnetic spectrum only available to the military. Now a system being developed at the Massachusetts Institute of Technology can spot people in different rooms using low-cost Wi-Fi technology.

Solar power slims down

June 26, 2013 7:35 am | by David L. Chandler, MIT News Office | News | Comments

Most efforts at improving solar cells have focused on increasing the efficiency of their energy conversion, or on lowering the cost of manufacturing. But now Massachusetts Institute of Technology researchers are opening another avenue for improvement, aiming to produce the thinnest and most lightweight solar panels possible.

Removing carbon from emissions

June 25, 2013 7:20 am | by David L. Chandler, MIT News Office | News | Comments

Many researchers are seeking ways to “scrub” carbon dioxide from the emissions of fossil-fuel power plants as a way of curbing the gas that is considered most responsible for global climate change. Now, researchers have developed a scrubbing system that requires no steam connection, can operate at lower temperatures and would essentially be a “plug-and-play” solution that could be added relatively easily to any existing power plant.

One-way DNA

June 24, 2013 9:29 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology biologists have discovered a mechanism that allows cells to read their own DNA in the correct direction and prevents them from copying most of the so-called “junk DNA” that makes up long stretches of our genome.

Better droplet condensation could boost power efficiency

June 24, 2013 7:36 am | by David L. Chandler, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology have developed an innovative approach to improving heat transfer in power plants and cooling systems. The new system could provide a 100% improvement in the efficiency of heat transfer over conventional systems, the researchers say.


Graphene-based system could lead to improved information processing

June 21, 2013 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology have proposed a new system that combines ferroelectric materials with graphene. The resulting hybrid technology could eventually lead to computer and data-storage chips that pack more components in a given area and are faster and less power hungry. The new system works by controlling waves called surface plasmons.

Seeing the human pulse

June 20, 2013 11:01 am | by Larry Hardesty, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology have developed a new algorithm that can accurately measure the heart rates of people depicted in ordinary digital video by analyzing imperceptibly small head movements that accompany the rush of blood caused by the heart’s contractions.

Cheap, color, holographic video

June 19, 2013 4:13 pm | by Larry Hardesty, MIT News Office | News | Comments

In the journal Nature, researchers at Massachusetts Institute of Technology’s Media Lab report a new approach to generating holograms that could lead to color holographic-video displays that are much cheaper to manufacture than today’s experimental, monochromatic displays. The same technique could also increase the resolution of conventional 2-D displays.

Multiview 3-D photography made simple

June 19, 2013 7:57 am | by Larry Hardesty, MIT News Office | News | Comments

The first commercial application of computational photography is the so-called light-field camera, which can measure not only the intensity of incoming light but also its angle. However these cameras trade a good deal of resolution for that extra angle information. That is, until now.

Surprising turns in magnetic thin films could lead to better data storage

June 18, 2013 7:19 am | by David L. Chandler, MIT News Office | News | Comments

A magnetic phenomenon newly discovered by Massachusetts Institute of Technology researchers could lead to much faster, denser and more energy-efficient chips for memory and computation. The findings could reduce the energy needed to store and retrieve one bit of data by a factor of 10,000.


Printing artificial bone

June 17, 2013 10:23 am | by Denise Brehm, Civil and Environmental Engineering | News | Comments

Researchers working to design new materials that are durable, lightweight and environmentally sustainable are increasingly looking to bone for inspiration. While researchers have come up with hierarchical structures in the design of new materials, going from a computer model to the production of physical artifacts has been a persistent challenge. Now researchers have developed an approach that allows them to turn their designs into reality.

New synthesis could make biofuel more appealing for mass production

June 17, 2013 7:32 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemical engineers have devised a cheaper way to synthesize a key biofuel component, which could make its industrial production much more cost effective. The compound, known as gamma-valerolactone (GVL), is attractive because of its versatility. It has more energy than ethanol and could be used on its own or as an additive to other fuels.

Can you feel me now?

June 14, 2013 7:31 am | by Jennifer Chu, MIT News Office | News | Comments

In the near future, a buzz in your belt or a pulse from your jacket may give you instructions on how to navigate your surroundings. Think of it as tactile Morse code: vibrations from a wearable, GPS-linked device that tell you to turn right or left, or stop, depending on the pattern of pulses you feel.

Securing the cloud

June 10, 2013 7:21 am | by Larry Hardesty, MIT News Office | News | Comments

A team of researchers has developed a new encryption scheme, known as a functional-encryption scheme, that solves a major problem with homomorphic encryption. The scheme would let the cloud server to run a single, specified computation on the homomorphically encrypted result, without being able to extract any other information about it.

Compulsive no more

June 6, 2013 3:00 pm | by Anne Trafton, MIT News Office | News | Comments

By activating a brain circuit that controls compulsive behavior, Massachusetts Institute of Technology neuroscientists have shown that they can block a compulsive behavior in mice—a result that could help researchers develop new treatments for diseases such as obsessive-compulsive disorder (OCD) and Tourette’s syndrome.

From Legos to Medical Devices

June 6, 2013 11:38 am | by Lindsay Hock | Articles | Comments

In seventh grade, now 25-year-old Nikolai Begg, 2013 Lemelson-MIT Student Prize winner, was assigned a general project for English class where he had to pick a topic and write a report. That year, in life science class he took a great interest in this field, choosing to write his report on surgical robots. Able to interview surgeons using surgical robots and engineers designing them, Begg discovered an incredible field.

Crash-testing lithium-ion batteries

June 4, 2013 8:06 am | by Jennifer Chu, MIT News Office | News | Comments

Lithium-ion batteries are lightweight, fully rechargeable and can pack a lot of energy into a small volume—making them attractive as power sources for hybrid and electric vehicles. However, there’s a significant downside: Overheating and collisions may cause the batteries to short-circuit and burst into flames. Engineers have worked to improve the safety of lithium-ion batteries and now there may be ways to make batteries more resilient.

Fine-tuning emissions from quantum dots

June 3, 2013 7:42 am | by David L. Chandler, MIT News Office | News | Comments

Tiny particles of matter called quantum dots, which emit light with exceptionally pure and bright colors, have found a prominent role as biological markers. In addition, they are realizing their potential in computer and television screens, and have promise in solid-state lighting. New research at Massachusetts Institute of Technology could now make these quantum dots even more efficient at delivering precisely tuned colors of light.

An electrical switch for magnetism

May 31, 2013 8:22 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have developed a new way of controlling the motion of magnetic domains—the key technology in magnetic memory systems. The new approach requires little power to write and no power to maintain the stored information, and could lead to a new generation of extremely low-power data storage. It controls magnetism by applying a voltage, rather than a magnetic field.

A new kind of chemical glue

May 30, 2013 7:36 am | by David L. Chandler, MIT News Office | News | Comments

Over the past three decades, researchers have found various applications of a method for attaching molecules to gold; the approach uses chemicals called thiols to bind the materials together. But while this technique has led to useful devices for electronics, sensing and nanotechnology, it has limitations. Now, a Massachusetts Institute of Technology team has found a new material that could overcome many of these limitations.

How computers can learn better

May 29, 2013 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Reinforcement learning is a technique in which a computer system learns how best to solve some problem through trial-and-error. Classic applications of reinforcement learning involve problems like robot navigation and automated surveillance. Now, researchers have developed a new reinforcement-learning algorithm that, for many problems, allows computer systems to find solutions much more efficiently than previous algorithms did.

Balance is key to making quantum-dot solar cells work

May 24, 2013 7:53 am | by David L. Chandler, MIT News Office | News | Comments

There has been great interest in using quantum dots to produce low-cost, easily manufactured, stable photovoltaic cells. But, so far, the creation of such cells has been limited by the fact that in practice, quantum dots are not as good at conducting an electric charge as they are in theory. Something in the physical structure of these cells seems to trap their electric-charge carriers. Now researchers may have found the key.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.