Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Targeting cancer with a triple threat

April 15, 2014 7:38 am | by Anne Trafton, MIT News Office | News | Comments

Delivering chemotherapy drugs in nanoparticle form could help reduce side effects by targeting the drugs directly to the tumors. In recent years, scientists have developed nanoparticles that deliver one or two chemotherapy drugs, but it has been difficult to design particles that can carry any more than that in a precise ratio. Now Massachusetts Institute of Technology chemists have devised a new way to build such nanoparticles.

A molecular approach to solar power

April 14, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

It’s an obvious truism, but one that may soon be outdated: The problem with solar power is that sometimes the sun doesn’t shine. Now a team at Massachusetts Institute of Technology and Harvard Univ. has come up with an ingenious workaround: a material that can absorb the sun’s heat and store that energy in chemical form, ready to be released again on demand.

How the brain pays attention

April 11, 2014 7:43 am | by Anne Trafton, MIT News Office | News | Comments

Picking out a face in the crowd is a complicated task: Your brain has to retrieve the memory of the face you’re seeking, then hold it in place while scanning the crowd, paying special attention to finding a match. A new study reveals how the brain achieves this type of focused attention on faces or other objects.

Advertisement

Tiny particles may pose big risk

April 10, 2014 11:05 am | by Anne Trafton, MIT News Office | News | Comments

Thousands of consumer products contain nanoparticles added by manufacturers to improve texture, kill microbes or enhance shelf life, among other purposes. However, several studies have shown that some of these engineered nanoparticles can be toxic to cells. A new study from Massachusetts Institute of Technology and the Harvard School of Public Health suggests that certain nanoparticles can also harm DNA.

New “switch” could power quantum computing

April 10, 2014 7:54 am | by Peter Dizikes, MIT News Office | News | Comments

Using a laser to place individual rubidium atoms near the surface of a lattice of light, scientists at Massachusetts Institute of Technology and Harvard Univ. have developed a new method for connecting particles—one that could help in the development of powerful quantum computing systems.

How coughs and sneezes float farther than you think

April 8, 2014 7:42 am | by Peter Dizikes, MIT News Office | News | Comments

The next time you feel a sneeze coming on, raise your elbow to cover up that multiphase turbulent buoyant cloud you’re about to expel. That’s right: A novel study by Massachusetts Institute of Technology researchers shows that coughs and sneezes have associated gas clouds that keep their potentially infectious droplets aloft over much greater distances than previously realized.

Algorithm can help robots determine orientation of objects

April 4, 2014 3:27 pm | News | Comments

Researchers are working on a new algorithm that could make re-identification much easier for computers by identifying the major orientations in 3-D scenes. The same algorithm could also simplify the problem of scene understanding, one of the central challenges in computer vision research.  

One currency, one price?

April 1, 2014 4:43 pm | by Peter Dizikes, MIT | News | Comments

Economics has a “law of one price,” which states that identical goods should, in theory, sell for identical prices or else markets will even out the differences. Empirical work on the topic, however, has produced little evidence in support of this “law”. Now, a newly published paper presents evidence of a strong convergence of prices within the Eurozone, the region of European countries sharing a common currency.

Advertisement

Ancient whodunit may be solved: The microbes did it!

April 1, 2014 8:41 am | by David L. Chandler, MIT | News | Comments

Fossil remains show that sometime around 252 million years ago, about 90% of all species on Earth were suddenly wiped out in what was the largest of this planet’s five known mass extinctions. But pinpointing the culprit has been difficult, and controversial. Now, a team of Massachusetts Institute of Technology researchers may have found enough evidence to convict the guilty parties, but you’ll need a microscope to see the killers.

Erasing a genetic mutation

March 31, 2014 9:15 am | by Anne Trafton, MIT News Office | News | Comments

Using a new gene-editing system based on bacterial proteins, Massachusetts Institute of Technology researchers have cured mice of a rare liver disorder caused by a single genetic mutation. The findings offer the first evidence that this gene-editing technique, known as CRISPR, can reverse disease symptoms in living animals.

Researchers uncover secrets of a mollusk’s bioceramic armor

March 31, 2014 7:43 am | by David L. Chandler, MIT News Office | News | Comments

The shells of a sea creature, the mollusk Placuna placenta, are not only exceptionally tough, but also clear enough to read through. Now, researchers at Massachusetts Institute of Technology have analyzed these shells to determine exactly why they are so resistant to penetration and damage; even though they are 99% calcite, a weak, brittle mineral.

A new angle on controlling light

March 28, 2014 7:43 am | by David L. Chandler, MIT News Office | News | Comments

Light waves can be defined by three fundamental characteristics: their color (or wavelength), polarization and direction. While it has long been possible to selectively filter light according to its color or polarization, selectivity based on the direction of propagation has remained elusive. Until now.

Robot builds on insights into Atlantic razor clam dynamics

March 25, 2014 11:10 am | by Helen Knight, MIT News correspondent | News | Comments

The Atlantic razor clam uses very little energy to burrow into undersea soil at high speed. Now a detailed insight into how the animal digs has led to the development of a robotic clam that can perform the same trick. The device, known as “RoboClam,” could be used to dig itself into the ground to bury anchors or destroy underwater mines.

Advertisement

MRI reveals genetic activity

March 25, 2014 7:57 am | by Anne Trafton, MIT News Office | News | Comments

Doctors commonly use MRI to diagnose tumors, damage from stroke and many other medical conditions. Neuroscientists also rely on it as a research tool for identifying parts of the brain that carry out different cognitive functions. Now, a team of biological engineers at Massachusetts Institute of Technology is trying to adapt MRI to a much smaller scale.

Engineers design “living materials”

March 24, 2014 9:45 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have coaxed bacterial cells to produce biofilms that can incorporate non-living materials, such as gold nanoparticles and quantum dots. These “living materials” combine the advantages of live cells, which respond to their environment and produce complex biological molecules, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.

Cells get ready for their close-up

March 21, 2014 7:45 am | by Anne Trafton, MIT News Office | News | Comments

In 2007, Massachusetts Institute of Technology scientists developed a type of microscopy that allowed them to detail the interior of a living cell in 3-D, without adding any fluorescent markers or other labels. This technique also revealed key properties, such as the cells’ density. Now the researchers have adapted that method so they can image cells as they flow through a tiny microfluidic channel.

Fast synthesis could boost drug development

March 19, 2014 7:42 am | by Anne Trafton, MIT News Office | News | Comments

Small protein fragments, also called peptides, are promising as drugs because they can be designed for very specific functions inside living cells. Insulin and the HIV drug Fuzeon are some of the earliest successful examples, and peptide drugs are expected to become a $25 billion market by 2018. However, a major bottleneck has prevented peptide drugs from reaching their full potential.

Nanopores control inner ear’s ability to select sounds

March 18, 2014 7:41 am | by David L. Chandler, MIT News Office | News | Comments

Even in a crowded room full of background noise, the human ear is remarkably adept at tuning in to a single voice—a feat that has proved remarkably difficult for computers to match. A new analysis of the underlying mechanisms, conducted by researchers at Massachusetts Institute of Technology, has provided insights that could ultimately lead to better machine hearing, and perhaps to better hearing aids as well.

Novel membrane reveals water molecules will bounce off a liquid surface

March 17, 2014 9:38 am | by Jennifer Chu, MIT News Office | News | Comments

Consider the nearest water surface: a half-full glass on your desk, a puddle outside your window or a lake across town. All of these surfaces represent liquid-vapor interfaces, where liquid meets air. Molecules of water vapor constantly collide with these liquid surfaces: Some make it through the surface and condense, while others simply bounce off.

Bionic plants

March 17, 2014 7:36 am | by Anne Trafton, MIT News Office | News | Comments

Plants have many valuable functions: They provide food and fuel, release the oxygen that we breathe and add beauty to our surroundings. Now, a team of Massachusetts Institute of Technology researchers wants to make plants even more useful by augmenting them with nanomaterials that could enhance their energy production and give them completely new functions, such as monitoring environmental pollutants.

Researchers write languages to design synthetic living systems

March 14, 2014 10:08 am | by Emily Kale, Virginia Tech | News | Comments

A computer-aided design tool has been used by researchers at Virginia Tech and the Massachusetts Institute of Technology to create genetic languages to guide the design of biological systems. Known as GenoCAD, the open-source software was developed to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.

Soft robotic fish moves like the real thing

March 13, 2014 8:05 am | by Larry Hardesty, MIT News Office | Videos | Comments

Soft robots have become a sufficiently popular research topic that they now have their own journal, Soft Robotics. In the first issue of that journal, Massachusetts Institute of Technology researchers report the first self-contained autonomous soft robot capable of rapid body motion: a “fish” that can execute an escape maneuver, convulsing its body to change direction in just a fraction of a second, or almost as quickly as a real fish can.

How tumors escape

March 11, 2014 7:43 am | by Anne Trafton, MIT News Office | News | Comments

About 90% of cancer deaths are caused by tumors that have spread from their original locations. This process, known as metastasis, requires cancer cells to break loose from their neighbors and from the supportive scaffold that gives tissues their structure. Cancer biologists have now discovered that certain proteins in this structure, known as the extracellular matrix, help cancer cells make their escape.

Driving down fuel usage

March 10, 2014 10:57 am | by Rob Matheson, MIT News Office | News | Comments

Despite their potential to reduce carbon dioxide emissions and fuel consumption, electric and hybrid cars and trucks struggled for years to find a solid customer base. Much of the reason came down to cost and convenience: Electric car batteries are expensive, and charging them requires plug-in infrastructure that’s still sparse in the U.S.

2-D material shows promise for optoelectronics

March 10, 2014 7:42 am | by David L. Chandler, MIT News Office | News | Comments

A team of Massachusetts Institute of Technology researchers has used a novel material that’s just a few atoms thick to create devices that can harness or emit light. This proof-of-concept could lead to ultra-thin, lightweight and flexible photovoltaic cells, light-emitting diodes (LEDs) and other optoelectronic devices, they say.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading