Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Rise of the dinosaurs

August 12, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

The Jurassic and Cretaceous periods were the golden age of dinosaurs, during which the prehistoric giants roamed the Earth for nearly 135 million years. Paleontologists have unearthed numerous fossils from these periods, suggesting that dinosaurs were abundant throughout the world. But where and when dinosaurs first came into existence has been difficult to ascertain.

An easier way to manipulate malaria genes

August 11, 2014 10:35 am | by Anne Trafton, MIT News Office | News | Comments

Plasmodium falciparum, the parasite that causes malaria, has proven notoriously resistant to scientists’ efforts to study its genetics. It can take up to a year to determine the function of a single gene, which has slowed efforts to develop new, more targeted drugs and vaccines. Biological engineers have now demonstrated a new genome-editing technique that can disrupt a single parasite gene in a matter of weeks.

Running on waste heat

August 11, 2014 7:36 am | by Rob Matheson, MIT News Office | News | Comments

It’s estimated that more than half of U.S. energy is wasted as heat. Mostly, this waste heat simply escapes into the air. But that’s beginning to change, thanks to thermoelectric innovators such as Massachusetts Institute of Technology’s Gang Chen. Thermoelectric materials convert temperature differences into electric voltage.

Advertisement

A new way to model cancer

August 7, 2014 7:45 am | by Anne Trafton, MIT News Office | News | Comments

Sequencing the genomes of tumor cells has revealed thousands of mutations associated with cancer. One way to discover the role of these mutations is to breed a strain of mice that carry the genetic flaw—but breeding such mice is an expensive, time-consuming process. Now, Massachusetts Institute of Technology researchers have found an alternative.

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Model of viral lifecycle could help find cure for hepatitis B

August 5, 2014 4:36 pm | by Helen Knight, MIT News correspondent | News | Comments

A new technique for studying the lifecycle of the hepatitis B virus could help researchers develop a cure for the disease. A recently published paper describes using microfabricated cell cultures to sustain hepatitis B virus in human liver cells, allowing them to study immune responses and drug treatments.

Advanced thin-film technique could deliver long-lasting medication

August 5, 2014 7:57 am | by Peter Dizikes, MIT News Office | News | Comments

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body. Now researchers have refined a technique that could enable pain medication to be released directly to specific parts of the body.

Extracting audio from visual information

August 4, 2014 12:17 pm | by Larry Hardesty, MIT News Office | Videos | Comments

Researchers at MIT, Microsoft, and Adobe have developed an algorithm that can reconstruct an audio signal by analyzing minute vibrations of objects depicted in video. In one set of experiments, they were able to recover intelligible speech from the vibrations of a potato-chip bag photographed from 15 feet away through soundproof glass.

Advertisement

NASA to test making rocket fuel on Mars

August 4, 2014 8:16 am | News | Comments

Taking fuel to Mars for return flights is heavy and expensive. The $1.9 billion Mars 2020 rover that NASA announced on Friday will include an experiment that will turn carbon dioxide in the Martian atmosphere into oxygen. It could then be used to make rocket fuel and for future astronauts to breathe. The device, named MOXIE, will make about three-quarters of an ounce of oxygen an hour.

Light pulses control graphene’s electrical behavior

August 4, 2014 8:10 am | by David L. Chandler, MIT News Office | News | Comments

Graphene has become a focus of research on a variety of potential uses. Now researchers at Massachusetts Institute of Technology have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

A new way to make microstructured surfaces

July 29, 2014 12:49 pm | by David L. Chandler, MIT News Office | News | Comments

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel 3-D textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a variety of useful properties—including controllable mechanical stiffness and strength, or the ability to repel water in a certain direction.

Forced mutations doom HIV

July 29, 2014 8:16 am | by Anne Trafton, MIT News Office | News | Comments

Fifteen years ago, Massachusetts Institute of Technology professor John Essigmann and colleagues from the Univ. of Washington had a novel idea for an HIV drug. They thought if they could induce the virus to mutate uncontrollably, they could force it to weaken and eventually die out—a strategy that our immune system uses against many viruses.

Climate change, air pollution will combine to curb food supplies

July 28, 2014 9:18 am | by David L. Chandler, MIT News Office | News | Comments

Many studies have shown the potential for global climate change to cut food supplies. But these studies have, for the most part, ignored the interactions between increasing temperature and air pollution. A new study shows that these interactions can be quite significant, suggesting that policymakers need to take both warming and air pollution into account in addressing food security.

Advertisement

Magnets may act as wireless cooling agents

July 28, 2014 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

The magnets cluttering the face of your refrigerator may one day be used as cooling agents, according to a new theory. The theory describes the motion of magnons. In addition to magnetic moments, magnons also conduct heat; from their equations, the researchers found that when exposed to a magnetic field gradient, magnons may be driven to move from one end of a magnet to another, carrying heat with them and producing a cooling effect.

Collecting just the right data

July 25, 2014 7:56 am | by Larry Hardesty, MIT News Office | News | Comments

Much artificial intelligence research addresses the problem of making predictions based on large data sets. An obvious example is the recommendation engines at retail sites like Amazon and Netflix. But some types of data are harder to collect than online click histories. And in other applications there may just not be enough time to crunch all the available data.

Study: Forward osmosis desalination not energy efficient

July 24, 2014 7:37 am | by Alissa Mallinson | MIT Dept. of Mechanical Engineering | News | Comments

In a recent study published in the Journal of Membrane Science, a Massachusetts Institute of Technology team reported that, contrary to popular support, forward osmosis desalination of seawater is significantly less energy efficient, compared to reverse osmosis. In forward osmosis, water is drawn from the seawater into a concentrated salt solution, known as a draw solution.

First direct-diode laser bright enough to cut, weld metal

July 23, 2014 9:43 am | by Rob Matheson, MIT News Office | News | Comments

MIT Lincoln Laboratory spinout TeraDiode is commercializing a multi-kilowatt diode laser system that’s bright enough to cut and weld through a half-inch of steel, and at greater efficiencies than today’s industrial lasers. The new system is based on a wavelength beam-combining laser diode design that won an R&D 100 Award in 2012. It combines multiple beams into a single output ray, allowing for a power boost without efficiency loss.

Building up bamboo

July 23, 2014 7:46 am | by Jennifer Chu, MIT News Office | Videos | Comments

Bamboo construction has traditionally been rather straightforward: Entire stalks are used to create latticed edifices, or woven in strips to form wall-sized screens. The effect can be stunning, and also practical in parts of the world where bamboo thrives. But there are limitations to building with bamboo.

More than glitter

July 21, 2014 10:35 am | by Anne Trafton, MIT News Office | Videos | Comments

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells. A new study from Massachusetts Institute of Technology materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons. 

Steam from the sun

July 21, 2014 7:55 am | by Jennifer Chu, MIT News Office | News | Comments

A new material structure developed at Massachusetts Institute of Technology generates steam by soaking up the sun. The structure—a layer of graphite flakes and an underlying carbon foam—is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam.

Getting a grip on robotic grasp

July 18, 2014 7:40 am | by Jennifer Chu, MIT News Office | Videos | Comments

Twisting a screwdriver, removing a bottle cap and peeling a banana are just a few simple tasks that are tricky to pull off single handedly. Now a new wrist-mounted robot can provide a helping hand—or rather, fingers. Researchers at Massachusetts Institute of Technology have developed a robot that enhances the grasping motion of the human hand.

No-wait data centers

July 17, 2014 7:56 am | by Larry Hardesty, MIT News Office | News | Comments

Big Websites usually maintain their own “data centers,” banks of tens or even hundreds of thousands of servers, all passing data back and forth to field users’ requests. Like any big, decentralized network, data centers are prone to congestion: Packets of data arriving at the same router at the same time are put in a queue, and if the queues get too long, packets can be delayed.

Getting a charge out of water droplets

July 15, 2014 7:53 am | by David L. Chandler, MIT News Office | News | Comments

Last year, Massachusetts Institute of Technology researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

Drones could provide perfect lighting for photography

July 11, 2014 11:48 am | by Larry Hardesty, MIT | News | Comments

Lighting is crucial to the art of photography, but they are cumbersome and difficult to use properly. Researchers at Massachusetts Institute of Technology and Cornell Univ. aim to change that by providing photographers with squadrons of small, light-equipped autonomous robots that automatically assume the positions necessary to produce lighting effects specified through a simple, intuitive, camera-mounted interface.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading