Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Neuroscientists reverse memories’ emotional associations

August 28, 2014 8:27 am | by Anne Trafton, MIT News Office | News | Comments

Most memories have some kind of emotion associated with them. A new study from Massachusetts Institute of Technology neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics.

Snowfall in a warmer world

August 27, 2014 2:26 pm | by Jennifer Chu, MIT News Office | News | Comments

If ever there were a silver lining to global warming, it might be the prospect of milder winters. After all, it stands to reason that a warmer climate would generate less snow. But a new Massachusetts Institute of Technology study suggests that you shouldn’t put your shovels away just yet.

Sorting cells with sound waves

August 26, 2014 7:36 am | by Anne Trafton, MIT News Office | Videos | Comments

Researchers have devised a new way to separate cells by exposing them to sound waves as they flow through a tiny channel. Their device, about the size of a dime, could be used to detect the extremely rare tumor cells that circulate in cancer patients’ blood, helping doctors predict whether a tumor is going to spread.

Advertisement

Aircraft Sense and Avoid

August 25, 2014 3:08 pm | Award Winners

MIT Lincoln Laboratory’s Airborne Sense and Avoid (ABSAA) Radar Panel is a stepped-notch antenna array that marks a substantial advance in the fabrication of wide-bandwidth radar systems for use aboard unmanned aerial systems (UAS). The panel provides high performance by incorporating multifunction radio-frequency integrated circuits using a commercially available, high-volume silicon germanium (SiGe) 0.13-μm foundry process.

Study: Cutting emissions pays for itself

August 25, 2014 7:44 am | by Audrey Resutek, MIT | News | Comments

Lower rates of asthma and other health problems are frequently cited as benefits of policies aimed at cutting carbon emissions from sources like power plants and vehicles, because these policies also lead to reductions in other harmful types of air pollution. But just how large are the health benefits of cleaner air in comparison to the costs of reducing carbon emissions?

Delivery by drone

August 21, 2014 9:16 am | by Jennifer Chu, MIT News Office | News | Comments

In the near future, the package that you ordered online may be deposited at your doorstep by a drone: Last December, online retailer Amazon announced plans to explore drone-based delivery, suggesting that fleets of flying robots might serve as autonomous messengers that shuttle packages to customers within 30 mins of an order.

Unlocking the potential of simulation software

August 21, 2014 7:44 am | by Rob Matheson, MIT News Office | News | Comments

With a method known as finite element analysis (FEA), engineers can generate 3-D digital models of large structures to simulate how they’ll fare under stress, vibrations, heat and other real-world conditions. Used for mapping out large-scale structures, these simulations require intensive computation done by powerful computers over many hours, costing engineering firms much time and money.

The power of salt

August 20, 2014 7:46 am | by Jennifer Chu, MIT News Office | News | Comments

Where the river meets the sea, there is the potential to harness a significant amount of renewable energy, according to a team of mechanical engineers at Massachusetts Institute of Technology. The researchers evaluated an emerging method of power generation called pressure retarded osmosis (PRO), in which two streams of different salinity are mixed to produce energy.

Advertisement

Lasercom Facilitates Space Data

August 19, 2014 11:24 am | Award Winners

Despite major advances in radio frequency (RF) systems, users will soon require higher data rates than radio can achieve. The use of optical frequencies, on the other hand, has the potential to achieve perhaps 100 or even 1,000 times the data rates of the best RF systems because of its huge unregulated spectrum and shorter wavelengths. Several so-called near-Earth lasercom systems have been demonstrated, but they have not scaled to practical use. MIT Lincoln Laboratory’s Lunar Laser Communication System (LLCS) combines several technologies to permit high-data-rate lasercom between distant platforms.

Driver’s Ed for Self-driving Vehicles

August 19, 2014 11:19 am | Award Winners

Self-driving vehicles may soon become commonplace on our roads as rapidly advancing sensing technologies converge with the prospect of better passenger safety and traffic efficiency. Through companies such as Google have made great strides in this area of research, current autonomous ground vehicles lack some capabilities, including the inability to sense vehicle position in adverse conditions. Localizing Ground Penetrating Radar (LGPR), introduced by MIT Lincoln Laboratory, can provide this capability using a new class of ground-penetrating radar technology to map underground features that are inherently stable over time.

RF Switching, No Sticking

August 19, 2014 11:17 am | Award Winners

In demand for portable applications because of their light weight and compact size, traditional microelectromechanical systems (MEMS) technologies suffer from a major problem: sticking. This is caused by the charged dielectric, which also suffers from deformation failure and contact welding. A new design engineered by MIT Lincoln Laboratory and implemented in a fabrication setting by Innovative Micro Technology solves these problems by allowing the electrode assembly to “curve”.

Range-independent Radar

August 19, 2014 11:15 am | Award Winners

The space environment directly above the Earth is crowded with orbiting objects and debris. Accurate, fast imaging is necessary to protect assets operating within this debris zone, namely the International Space Station, low-Earth orbit satellites and other science missions. The Haystack Ultrawideband Satellite Imaging Radar (HUSIR) constructed by MIT Lincoln Laboratory was engineered for this task.

Our connection to content

August 19, 2014 9:34 am | by Rob Matheson, MIT News Office | News | Comments

It’s often said that humans are wired to connect: The neural wiring that helps us read the emotions and actions of other people may be a foundation for human empathy. But for the past eight years, MIT Media Lab spinout Innerscope Research has been using neuroscience technologies that gauge subconscious emotions by monitoring brain and body activity to show just how powerfully we also connect to media and marketing communications.

Advertisement

Engineering new bone growth

August 19, 2014 7:56 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold induces the body to rapidly form new bone that looks and behaves just like the original tissue.

Recycling old batteries into solar cells

August 18, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

This could be a classic win-win solution: A system proposed by researchers at Massachusetts Institute of Technology recycles materials from discarded car batteries—a potential source of lead pollution—into new, long-lasting solar panels that provide emissions-free power. The system is based on a recent development in solar cells that makes use of a compound called perovskite.

Visual control of big data

August 15, 2014 7:55 am | by Larry Hardesty, MIT News Office | News | Comments

In the age of big data, visualization tools are vital. With a single glance at a graphic display, a human being can recognize patterns that a computer might fail to find even after hours of analysis. But what if there are aberrations in the patterns? Or what if there’s just a suggestion of a visual pattern that’s not distinct enough to justify any strong inferences? Or what if the pattern is clear, but not what was to be expected?

Finding a piece of the proton-spin puzzle

August 14, 2014 8:11 am | by Jennifer Chu, MIT News Office | News | Comments

What causes a proton to spin? This fundamental question has been a longstanding mystery in particle physics, although it was once thought that the answer would be fairly straightforward: The spin of a proton’s three subatomic particles, called quarks, would simply add up to produce its total spin.

New analysis reveals tumor weaknesses

August 13, 2014 7:40 am | by Anne Trafton, MIT News Office | News | Comments

Scientists have known for decades that cancer can be caused by genetic mutations, but more recently they have discovered that chemical modifications of a gene can also contribute to cancer. These alterations, known as epigenetic modifications, control whether a gene is turned on or off. Analyzing these modifications can provide important clues to the type of tumor a patient has, and how it will respond to different drugs.

Rise of the dinosaurs

August 12, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

The Jurassic and Cretaceous periods were the golden age of dinosaurs, during which the prehistoric giants roamed the Earth for nearly 135 million years. Paleontologists have unearthed numerous fossils from these periods, suggesting that dinosaurs were abundant throughout the world. But where and when dinosaurs first came into existence has been difficult to ascertain.

An easier way to manipulate malaria genes

August 11, 2014 10:35 am | by Anne Trafton, MIT News Office | News | Comments

Plasmodium falciparum, the parasite that causes malaria, has proven notoriously resistant to scientists’ efforts to study its genetics. It can take up to a year to determine the function of a single gene, which has slowed efforts to develop new, more targeted drugs and vaccines. Biological engineers have now demonstrated a new genome-editing technique that can disrupt a single parasite gene in a matter of weeks.

Running on waste heat

August 11, 2014 7:36 am | by Rob Matheson, MIT News Office | News | Comments

It’s estimated that more than half of U.S. energy is wasted as heat. Mostly, this waste heat simply escapes into the air. But that’s beginning to change, thanks to thermoelectric innovators such as Massachusetts Institute of Technology’s Gang Chen. Thermoelectric materials convert temperature differences into electric voltage.

A new way to model cancer

August 7, 2014 7:45 am | by Anne Trafton, MIT News Office | News | Comments

Sequencing the genomes of tumor cells has revealed thousands of mutations associated with cancer. One way to discover the role of these mutations is to breed a strain of mice that carry the genetic flaw—but breeding such mice is an expensive, time-consuming process. Now, Massachusetts Institute of Technology researchers have found an alternative.

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Model of viral lifecycle could help find cure for hepatitis B

August 5, 2014 4:36 pm | by Helen Knight, MIT News correspondent | News | Comments

A new technique for studying the lifecycle of the hepatitis B virus could help researchers develop a cure for the disease. A recently published paper describes using microfabricated cell cultures to sustain hepatitis B virus in human liver cells, allowing them to study immune responses and drug treatments.

Advanced thin-film technique could deliver long-lasting medication

August 5, 2014 7:57 am | by Peter Dizikes, MIT News Office | News | Comments

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body. Now researchers have refined a technique that could enable pain medication to be released directly to specific parts of the body.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading