Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Knowing the unknown

March 27, 2013 7:34 am | by Helen Knight, MIT News correspondent | News | Comments

Robot butlers that tidy your house or cook you a meal have long been the dream of science-fiction writers and artificial intelligence researchers alike. But if robots are ever going to move effectively around our constantly changing homes or workspaces performing such complex tasks, they will need to be more aware of their own limitations, according to researchers at Massachusetts Institute of Technology.

New model accurately predicts 3D sand flow

March 26, 2013 7:52 am | by Jennifer Chu, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology have devised a model of granular flow in three dimensions. The team found the model accurately predicts the results of granular flow experiments, including a flow configuration that has long puzzled scientists. The model may also be useful for improving the flow of drug powders, tablets, and capsules in pharmaceutical manufacturing.

New solar cell design based on dots, wires

March 25, 2013 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Using exotic particles called quantum dots as the basis for a photovoltaic cell is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. A new wrinkle added by a team of researchers at Massachusetts Institute of Technology—embedding the quantum dots within a forest of nanowires—promises to provide a significant boost.


Study: Volcanic eruptions triggered the end-Triassic extinction

March 22, 2013 2:28 pm | News | Comments

It’s not entirely clear what caused the end-Triassic extinction, although most scientists agree on a likely scenario: Over a relatively short period of time, massive volcanic eruptions from a large region known as the Central Atlantic Magmatic Province (CAMP) spewed forth huge amounts of lava and gas, including carbon dioxide, sulfur and methane. Now, a research team has determined that these eruptions occurred precisely when the extinction began, providing strong evidence that volcanic activity did indeed trigger the end-Triassic extinction.

Robot meets world

March 22, 2013 7:54 am | by Larry Hardesty, MIT News Office | News | Comments

When a robot is moving one of its limbs through free space, its behavior is well described by a few simple equations. But as soon as it strikes something solid, those equations break down. Roboticists typically use ad hoc control strategies to negotiate collisions and then revert to their rigorous mathematical models when the robot begins to move again. Researchers at Massachusetts Institute of Technology are hoping to change that, with a new mathematical framework that unifies the analysis of both collisions and movement through free space.

Predicted state of atomic collapse seen for first time

March 14, 2013 8:25 am | by David L. Chandler, MIT News Office | News | Comments

Atomic collapse, a phenomenon first predicted in the 1930s based on quantum mechanics and relativistic physics but never before observed, has now been seen for the first time in an “artificial nucleus” simulated on a sheet of graphene. The observation not only provides confirmation of long-held theoretical predictions, but could also pave the way for new kinds of graphene-based electronic devices, and for further research on basic physics.

Making cloud computing more efficient

March 13, 2013 8:10 am | by Larry Hardesty, MIT News Office | News | Comments

For many companies, moving their Web-application servers to the cloud is an attractive option, since cloud-computing services can offer economies of scale, extensive technical support, and easy accommodation of demand fluctuations. But for applications that depend heavily on database queries, cloud hosting can pose as many problems as it solves. Researchers are developing a new system that could help solve these problems.

MIT “cheetah” robot rivals running animals in efficiency

March 11, 2013 10:28 am | by Jennifer Chu, MIT News Office | News | Comments

A 70-pound “cheetah” robot designed by Massachusetts Institute of Technology researchers may soon outpace its animal counterparts in running efficiency: In treadmill tests, the researchers have found that the robot, which is about the size and weight of an actual cheetah, wastes very little energy as it trots continuously for up to an hour and a half at 5 mph. The key to the robot’s streamlined stride can be found in the shoulders.


Circuitry of cells involved in immunity, autoimmune diseases exposed

March 7, 2013 10:09 am | by Haley Bridger, Broad Communications | News | Comments

New work from the Broad Institute and partnering organizations has expanded the understanding of how one type of immune cell—known as a T helper 17 or Th17 cell—develops, and how its growth influences the development of immune responses. By figuring out how these cells are “wired,” the researchers make a surprising connection between autoimmunity and salt consumption.

MIT researchers develop solar-to-fuel roadmap for crystalline silicon

March 5, 2013 11:12 am | by David L. Chandler, MIT News Office | News | Comments

Bringing the concept of an “artificial leaf” closer to reality, a team of researchers at Massachusetts Institute of Technology has published a detailed analysis of all the factors that could limit the efficiency of such a system. The new analysis lays out a roadmap for a research program to improve the efficiency of these systems, and could quickly lead to the production of a practical, inexpensive and commercially viable prototype.

New surface coating cuts through the fog

March 5, 2013 9:08 am | by David L. Chandler, MIT News Office | News | Comments

Until recently, there has been no systematic way of evaluating how different anti-fog coatings perform under real-world conditions. A team of MIT researchers has developed such a testing method, and used it to find a coating that outperforms others not only in preventing foggy buildups, but also in maintaining good optical properties without distortion.

MIT’s Ernest J. Moniz nominated Secretary of Energy

March 4, 2013 2:37 pm | by David L. Chandler, MIT News Office | News | Comments

President Barack Obama announced today that he intends to nominate Ernest J. Moniz to head the U.S. Department of Energy (DOE). Moniz is the Cecil and Ida Green Professor of Physics and Engineering Systems at Massachusetts Institute of Technology, as well as the director of the MIT Energy Initiative (MITEI) and the Laboratory for Energy and the Environment. At MIT, Moniz has also served previously as head of the Department of Physics and as director of the Bates Linear Accelerator Center.

Chemists find help from nature in fighting cancer

February 27, 2013 7:52 am | by Anne Trafton, MIT News Office | News | Comments

Inspired by a chemical that fungi secrete to defend their territory, Massachusetts Institute of Technology chemists have synthesized and tested several dozen compounds that may hold promise as potential cancer drugs.


Sterilizing with the sun

February 26, 2013 10:52 am | News | Comments

Using sunlight, researchers and students at Massachusetts Institute of Technology are trying to change how medical equipment is sterilized in remote clinics—and a pilot project in Nicaragua has begun to show promising results.

Laser mastery narrows down sources of superconductivity

February 25, 2013 9:35 am | News | Comments

Pinning down one of the possible explanations for the phenomenon of high-temperature superconductors—fleeting fluctuations called charge-density waves (CDWs)—could help pave the way for technological advances. Researchers report that they have combined two state-of-the-art experimental techniques to study those electron waves with unprecedented precision in two-dimensional, custom-grown materials.

Teaching robots lateral thinking

February 25, 2013 9:12 am | by Larry Hardesty, MIT News Office | News | Comments

Many commercial robotic arms perform what roboticists call "pick-and-place" tasks: The arm picks up an object in one location and places it in another. Usually, the objects are positioned so that the arm can easily grasp them; the appendage that does the grasping may even be tailored to the objects' shape. General-purpose household robots, however, would have to be able to manipulate objects of any shape, left in any location. And today, commercially available robots don't have anything like the dexterity of the human hand. Until now.

A new look at high-temperature superconductors

February 25, 2013 7:49 am | by David L. Chandler, MIT News Office | News | Comments

While the phenomenon of superconductivity has been known for more than a century, the temperature at which it occur has remained too low for any practical applications. The discovery of high-temperature superconductors in the 1980s led to speculation that a surge of new discoveries might quickly lead to room-temperature superconductors. Despite intense research, these materials have remained poorly understood. Until now.

MIT report identifies keys to new American innovation

February 22, 2013 10:46 am | by Peter Dizikes, MIT News Office | News | Comments

What kinds of industrial production can bring innovation to the American economy? An intensive, long-term study by a group of Massachusetts Institute of Technology scholars suggests that a renewed commitment to research and development in manufacturing, sometimes through creative new forms of collaboration, can spur innovation and growth in the United States as a whole.

How human language could have evolved from birdsong

February 21, 2013 11:41 am | by Peter Dizikes, MIT News Office | News | Comments

"The sounds uttered by birds offer in several respects the nearest analogy to language," Charles Darwin wrote in "The Descent of Man" (1871), while contemplating how humans learned to speak. Language, he speculated, might have had its origins in singing, which "might have given rise to words expressive of various complex emotions." Now researchers from Massachusetts Institute of Technology, along with a scholar from the University of Tokyo, say that Darwin was on the right path.

Mercury may have harbored an ancient magma ocean

February 21, 2013 7:53 am | by Jennifer Chu, MIT News Office | News | Comments

By analyzing Mercury's rocky surface, scientists have been able to partially reconstruct the planet's history over billions of years. Now, drawing upon the chemical composition of rock features on the planet's surface, scientists have proposed that Mercury may have harbored a large, roiling ocean of magma very early in its history, shortly after its formation about 4.5 billion years ago.

Technique shows how drops, bubbles stick to surfaces

February 20, 2013 7:41 am | by David L. Chandler, MIT News Office | News | Comments

Understanding exactly how droplets and bubbles stick to surfaces is a 100-year-old problem that has eluded experimental answers. Furthermore, it's a question with implications for everything from how to improve power plant efficiency to how to reduce fogging on windshields. Now, thanks to the help of a team from Massachusetts Institute of Technology and a scanning electron microscope, this longstanding problem has finally been licked.

Chip cleans up common flaws in amateur photographs

February 19, 2013 8:28 am | by Helen Knight, MIT News correspondent | News | Comments

Your smartphone snapshots could be instantly converted into professional-looking photographs with just the touch of a button, thanks to a processor chip developed at Massachusetts Institute of Technology. The chip can perform tasks such as creating more realistic or enhanced lighting in a shot without destroying the scene's ambience, in just a fraction of a second. The technology could be integrated with any smartphone, tablet computer, or digital camera.

Engineering cells for more efficient biofuel production

February 19, 2013 7:47 am | by Anne Trafton, MIT News Office | News | Comments

In the search for renewable alternatives to gasoline, heavy alcohols such as isobutanol are promising candidates. Not only do they contain more energy than ethanol, but they are also more compatible with existing gasoline-based infrastructure. For isobutanol to become practical, however, scientists need a way to reliably produce huge quantities of it from renewable sources. Massachusetts Institute of Technology chemical engineers and biologists have now devised a way to dramatically boost isobutanol production in yeast, which naturally make it in small amounts.

A cooler way to protect silicon surfaces

February 13, 2013 7:49 am | by David L. Chandler, MIT News Office | News | Comments

Silicon requires a surface coating before use in its given applications. The coating "passivates" the material, tying up loose atomic bonds to prevent oxidation that would ruin its electrical properties. But this passivation process consumes a lot of heat and energy, making it costly and limiting the kinds of materials that can be added to the devices. Now a team of researchers has found a way to passivate silicon at room temperature, which could be a significant boon to solar cell production and other silicon-based technologies.

Cell circuits remember their history

February 11, 2013 8:02 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have created genetic circuits in bacterial cells that not only perform logic functions, but also remember the results, which are encoded in the cell’s DNA and passed on for dozens of generations.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.