Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Revising Darwin's sinking-island theory

May 13, 2013 7:41 am | by Genevieve Wanucha, Oceans at MIT | News | Comments

The three different formations of South Pacific coral-reef islands, fringing, barrier, and atoll, have long fascinated geologists. The question of how reefs develop into these shapes over evolutionary time produced an enduring conflict between two hypotheses, one from Charles Darwin and the other from Reginald Daly. But in a recently published paper, researchers use modern measurements and computer modeling to resolve this old conundrum.

Potential flu pandemic lurks

May 10, 2013 10:36 am | by Anne Trafton, MIT News Office | News | Comments

In the summer of 1968, a new strain of influenza appeared in Hong Kong. This strain, known as H3N2, spread around the globe and eventually killed an estimated 1 million people. A new study from Massachusetts Institute of Technology reveals that there are many strains of H3N2 circulating in birds and pigs that are genetically similar to the 1968 strain and have the potential to generate a pandemic if they leap to humans.

One order of steel; hold the greenhouse gases

May 8, 2013 2:52 pm | by David L. Chandler, MIT News Office | News | Comments

Anyone who has seen pictures of the giant, red-hot cauldrons in which steel is made—fed by vast amounts of carbon, and belching flame and smoke—would not be surprised to learn that steelmaking is one of the world’s leading industrial sources of greenhouse gases. But remarkably, a new process developed by Massachusetts Institute of Technology researchers could change all that.


Cleaner energy, warmer climate?

May 7, 2013 7:17 am | by Vicki Ekstrom, Joint Program on the Science and Policy of Global Change | News | Comments

The growing global demand for energy, combined with a need to reduce emissions and lessen the effects of climate change, has increased focus on cleaner energy sources. But what unintended consequences could these cleaner sources have on the changing climate? Researchers at Massachusetts Institute of Technology now have some answers to that question, using biofuels as a test case.

New research could let vehicles, robots collaborate with humans

May 3, 2013 7:39 am | by Helen Knight, MIT News correspondent | News | Comments

You get into your car and ask it to get you home in time for the start of the big game, stopping off at your favorite Chinese restaurant on the way for takeout. But the car informs you that the road past the Chinese restaurant is closed for repairs, and you will have to choose a different place. You select a nearby Korean restaurant from the options the car suggests. Autonomous devices could soon collaborate with humans in this way.

New theory could streamline operations management, cloud computing

May 1, 2013 11:22 am | by Larry Hardesty, MIT News Office | News | Comments

It’s often said that we live in an age of increased specialization. But in a series of recent papers, researchers have shown that, in a number of different contexts, a little versatility can go a long way. Their theoretical analyses could have implications for operations management, cloud computing—and possibly even health care delivery and manufacturing.

Unleashing oxygen

April 30, 2013 9:39 am | by David L. Chandler, MIT News Office | News | Comments

Fuel cells make electricity by combining hydrogen, or hydrocarbon fuels, with oxygen. But the most efficient types, called solid-oxide fuel cells, have drawbacks that have limited their usefulness—including operating temperatures above 700 C. Now, researchers have unraveled the properties of a promising alternative material structure for a key component of these devices.

Understanding the turbulence in plasmas

April 29, 2013 7:49 am | by David L. Chandler, MIT News Office | News | Comments

One simple phenomenon explains why practical, self-sustaining fusion reactions have proved difficult to achieve: Turbulence in the superhot, electrically charged gas, called plasma, that circulates inside a fusion reactor can cause the plasma to lose much of its heat. This prevents the plasma from reaching the temperatures needed to overcome the electrical repulsion between atomic nuclei. Until now.


A blueprint for reversible wrinkling in composite materials

April 24, 2013 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

Many natural composite materials have evolved to wrinkle in response to certain stimuli; and scientists say that understanding the mechanisms by which materials internally wrinkle could help in creating new, responsive materials. Now researchers have identified the mechanics involved in the wrinkling of thin interfacial layers within soft composite materials, and developed a model based on material properties and geometry.

New solar cell coating could boost efficiency

April 18, 2013 2:44 pm | by David L. Chandler, MIT News Office | News | Comments

Throughout decades of research on solar cells, one formula has been considered an absolute limit to the efficiency of such devices in converting sunlight into electricity: Called the Shockley-Queisser efficiency limit, it posits that the ultimate conversion efficiency can never exceed 34% for a single optimized semiconductor junction. Now, researchers have shown that there is a way to blow past that limit.

Decoding the structure of bone

April 17, 2013 8:40 am | by David L. Chandler, MIT News Office | News | Comments

The bones that support our bodies are made of remarkably complex arrangements of materials—so much so that decoding the precise structure responsible for their great strength and resilience has eluded scientists’ best efforts for decades. But now, a team of researchers has finally unraveled the structure of bone with almost atom-by-atom precision.

The many uses of nanowires and nanotubes

April 11, 2013 10:18 am | by David L. Chandler, MIT News Office | News | Comments

Nanowires and nanotubes have become hot materials in recent years. They exist in many forms—made of metals, semiconductors, insulators, and organic compounds—and are being studied for use in electronics, energy conversion, optics and chemical sensing, among other fields.

Study reveals how melanoma evades chemotherapy

April 9, 2013 11:04 pm | News | Comments

Nitric oxide (NO), a gas with many biological functions in healthy cells, can also help some cancer cells survive chemotherapy. A new study from Massachusetts Institute of Technology (MIT) reveals one way in which this resistance may arise, and raises the possibility of weakening cancer cells by cutting off their supply of NO.


A ‘green’ Sahara was far less dusty than today

April 6, 2013 3:07 pm | News | Comments

As recently as 5,000 years ago, the Sahara was a verdant landscape, with sprawling vegetation and numerous lakes.  The Sahara’s “green” era likely lasted from 11,000 to 5,000 years ago, and is thought to have ended abruptly. Now researchers have found that this abrupt climate change occurred nearly simultaneously across North Africa.

How to minimize the side effects of cancer treatment

April 5, 2013 10:41 am | by Anne Trafton, MIT News Office | News | Comments

New research from the Massachusetts Institute of Technology may allow scientists to develop a test that can predict the severity of side effects of some common chemotherapy agents in individual patients, allowing doctors to tailor treatments to minimize the damage. The study focused on powerful cancer drugs known as alkylating agents, which damage DNA by attaching molecules containing carbon atoms to it. Found in tobacco smoke and in byproducts of fuel combustion, these compounds can actually cause cancer. However, because they can kill tumor cells, very reactive alkylating agents are also used to treat cancer.

Living in a material world

April 4, 2013 8:03 am | by Jennifer Chu, MIT News Office | News | Comments

A new report finds that the global manufacturing sector has made great strides in energy efficiency: The manufacturing of materials such as steel, cement, paper, and aluminum has become increasingly streamlined, requiring far less energy than when these processes were first invented. However, despite more energy-efficient manufacturing, the researchers found that such processes may be approaching their thermodynamic limits: There are increasingly limited options available to make them significantly more efficient.

A new understanding of metallic glass

April 3, 2013 9:00 am | by David L. Chandler, MIT News Office | News | Comments

Gelatin sets by forming a solid matrix full of random, liquid-filled pores—much like a saturated sponge. It turns out that a similar process also happens in some metallic glasses, substances whose molecular behavior has now been clarified by new Massachusetts Institute of Technology research detailing the “setting” of these metal alloys.

Watching fluid flow at nanometer scales

April 1, 2013 7:34 am | by David L. Chandler, MIT News Office | News | Comments

Imagine if you could drink a glass of water just by inserting a solid wire into it and sucking on it as though it were a soda straw. It turns out that if you were tiny enough, that method would work just fine—and wouldn’t even require the suction to start. New research has demonstrated, for the first time, that when inserted into a pool of liquid, nanowires naturally draw the liquid upward in a thin film that coats the surface of the wire.

MicroRNA detection on the cheap

March 29, 2013 7:37 am | by Rob Matheson, MIT News Office | News | Comments

Current methods of detecting microRNA (miRNA) can be time consuming and costly: The custom equipment used in such tests costs more than $100,000, and the limited throughput of these systems further hinders progress. Two Massachusetts Institute of Technology alumni are helping to rectify these issues through their fast-growing, Cambridge-headquartered startup, Firefly BioWorks Inc., which provides technology that allows for rapid miRNA detection in a large number of samples using standard laboratory equipment.

Knowing the unknown

March 27, 2013 7:34 am | by Helen Knight, MIT News correspondent | News | Comments

Robot butlers that tidy your house or cook you a meal have long been the dream of science-fiction writers and artificial intelligence researchers alike. But if robots are ever going to move effectively around our constantly changing homes or workspaces performing such complex tasks, they will need to be more aware of their own limitations, according to researchers at Massachusetts Institute of Technology.

New model accurately predicts 3D sand flow

March 26, 2013 7:52 am | by Jennifer Chu, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology have devised a model of granular flow in three dimensions. The team found the model accurately predicts the results of granular flow experiments, including a flow configuration that has long puzzled scientists. The model may also be useful for improving the flow of drug powders, tablets, and capsules in pharmaceutical manufacturing.

New solar cell design based on dots, wires

March 25, 2013 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Using exotic particles called quantum dots as the basis for a photovoltaic cell is not a new idea, but attempts to make such devices have not yet achieved sufficiently high efficiency in converting sunlight to power. A new wrinkle added by a team of researchers at Massachusetts Institute of Technology—embedding the quantum dots within a forest of nanowires—promises to provide a significant boost.

Study: Volcanic eruptions triggered the end-Triassic extinction

March 22, 2013 2:28 pm | News | Comments

It’s not entirely clear what caused the end-Triassic extinction, although most scientists agree on a likely scenario: Over a relatively short period of time, massive volcanic eruptions from a large region known as the Central Atlantic Magmatic Province (CAMP) spewed forth huge amounts of lava and gas, including carbon dioxide, sulfur and methane. Now, a research team has determined that these eruptions occurred precisely when the extinction began, providing strong evidence that volcanic activity did indeed trigger the end-Triassic extinction.

Robot meets world

March 22, 2013 7:54 am | by Larry Hardesty, MIT News Office | News | Comments

When a robot is moving one of its limbs through free space, its behavior is well described by a few simple equations. But as soon as it strikes something solid, those equations break down. Roboticists typically use ad hoc control strategies to negotiate collisions and then revert to their rigorous mathematical models when the robot begins to move again. Researchers at Massachusetts Institute of Technology are hoping to change that, with a new mathematical framework that unifies the analysis of both collisions and movement through free space.

Predicted state of atomic collapse seen for first time

March 14, 2013 8:25 am | by David L. Chandler, MIT News Office | News | Comments

Atomic collapse, a phenomenon first predicted in the 1930s based on quantum mechanics and relativistic physics but never before observed, has now been seen for the first time in an “artificial nucleus” simulated on a sheet of graphene. The observation not only provides confirmation of long-held theoretical predictions, but could also pave the way for new kinds of graphene-based electronic devices, and for further research on basic physics.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.