Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology
View Sample

FREE Email Newsletter

Crash-testing lithium-ion batteries

June 4, 2013 8:06 am | by Jennifer Chu, MIT News Office | News | Comments

Lithium-ion batteries are lightweight, fully rechargeable and can pack a lot of energy into a small volume—making them attractive as power sources for hybrid and electric vehicles. However, there’s a significant downside: Overheating and collisions may cause the batteries to short-circuit and burst into flames. Engineers have worked to improve the safety of lithium-ion batteries and now there may be ways to make batteries more resilient.

Fine-tuning emissions from quantum dots

June 3, 2013 7:42 am | by David L. Chandler, MIT News Office | News | Comments

Tiny particles of matter called quantum dots, which emit light with exceptionally pure and bright colors, have found a prominent role as biological markers. In addition, they are realizing their potential in computer and television screens, and have promise in solid-state lighting. New research at Massachusetts Institute of Technology could now make these quantum dots even more efficient at delivering precisely tuned colors of light.

An electrical switch for magnetism

May 31, 2013 8:22 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have developed a new way of controlling the motion of magnetic domains—the key technology in magnetic memory systems. The new approach requires little power to write and no power to maintain the stored information, and could lead to a new generation of extremely low-power data storage. It controls magnetism by applying a voltage, rather than a magnetic field.

Advertisement

A new kind of chemical glue

May 30, 2013 7:36 am | by David L. Chandler, MIT News Office | News | Comments

Over the past three decades, researchers have found various applications of a method for attaching molecules to gold; the approach uses chemicals called thiols to bind the materials together. But while this technique has led to useful devices for electronics, sensing and nanotechnology, it has limitations. Now, a Massachusetts Institute of Technology team has found a new material that could overcome many of these limitations.

How computers can learn better

May 29, 2013 7:42 am | by Larry Hardesty, MIT News Office | News | Comments

Reinforcement learning is a technique in which a computer system learns how best to solve some problem through trial-and-error. Classic applications of reinforcement learning involve problems like robot navigation and automated surveillance. Now, researchers have developed a new reinforcement-learning algorithm that, for many problems, allows computer systems to find solutions much more efficiently than previous algorithms did.

Balance is key to making quantum-dot solar cells work

May 24, 2013 7:53 am | by David L. Chandler, MIT News Office | News | Comments

There has been great interest in using quantum dots to produce low-cost, easily manufactured, stable photovoltaic cells. But, so far, the creation of such cells has been limited by the fact that in practice, quantum dots are not as good at conducting an electric charge as they are in theory. Something in the physical structure of these cells seems to trap their electric-charge carriers. Now researchers may have found the key.

Evaluating a new way to open clogged arteries

May 21, 2013 7:30 am | by Anne Trafton, MIT News Office | News | Comments

Over the past few decades, scientists have developed many devices that can reopen clogged arteries, including angioplasty balloons and metallic stents. While generally effective, each of these treatments has drawbacks, including the risk of side effects. A new study analyzes the potential usefulness of a new treatment that combines the benefits of angioplasty balloons and drug-releasing stents, but may pose fewer risks.

New technique advances carbon-fiber composites

May 20, 2013 7:31 am | by Jennifer Chu, MIT News Office | News | Comments

These days, aerospace engineering is all about the light stuff. Advanced carbon-fiber composites have been used in recent years to lighten planes’ loads. For the next generation of commercial jets, researchers are looking to even stronger and lighter materials, such as composites made with carbon fibers coated with carbon nanotubes. However, a significant hurdle to achieving such composites has existed, until now.

Advertisement

Stacking 2D materials produces surprising results

May 17, 2013 7:46 am | by David L. Chandler, MIT News Office | News | Comments

Graphene has dazzled scientists ever since its discovery more than a decade ago. But one long-sought goal has proved elusive: how to engineer into graphene a property called a band gap, which would be necessary to use the material to make transistors and other electronic devices. New findings by Massachusetts Institute of Technology researchers are a major step toward making graphene with this coveted property.

A nano solution in the fight against diabetes

May 16, 2013 9:38 am | by Anne Trafton, MIT News Office | News | Comments

Injectable nanoparticles developed at Massachusetts Institute of Technology may someday eliminate the need for patients with Type 1 diabetes to constantly monitor their blood-sugar levels and inject themselves with insulin. The nanoparticles were designed to sense glucose levels in the body and respond by secreting the appropriate amount of insulin.

Cells as living calculators

May 15, 2013 3:00 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have transformed bacterial cells into living calculators that can compute logarithms, divide, and take square roots, using three or fewer genetic parts. Inspired by how analog electronic circuits function, the researchers created synthetic computation circuits by combining existing genetic “parts,” or engineered genes, in novel ways.

Secret of efficient photosynthesis is decoded

May 15, 2013 9:25 am | News | Comments

Purple bacteria are among Earth’s oldest organisms, and among its most efficient in turning sunlight into usable chemical energy. A new analysis to determine the reason for its light-harvesting prowess has revealed a ring-shaped molecule with an unusual ninefold symmetry. This symmetry accounts its efficiency, and for its mechanical durability and strength.

Making frequency-hopping radios practical

May 15, 2013 7:45 am | by Larry Hardesty, MIT News Office | News | Comments

The way in which radio spectrum is currently allocated to different wireless technologies can lead to gross inefficiencies. Cognitive radio serves as a solution. Different proposals for cognitive radio place different emphases on hardware and software, but the chief component of many hardware approaches is a bank of filters that can isolate any frequency in a wide band. Researchers have developed a new method for manufacturing such filters.

Advertisement

Study identifies key protein for cell death

May 14, 2013 10:49 am | by Anne Trafton, MIT News Office | News | Comments

When cells suffer too much DNA damage, they are usually forced to undergo programmed cell death, or apoptosis. However, cancer cells often ignore these signals, flourishing even after chemotherapy drugs have ravaged their DNA. A new finding may offer a way to overcome that resistance: A team has identified a key protein involved in an alternative death pathway known as programmed necrosis.

Team observes real-time charging of a lithium-air battery

May 13, 2013 9:07 am | by David L. Chandler, MIT News Office | News | Comments

One of the most promising new kinds of battery to power electric cars is called a lithium-air battery. But progress has been slow. Researchers have used transmission electron microscope (TEM) imaging to observe, at a molecular level, what goes on during a reaction called oxygen evolution as lithium-air batteries charge; this reaction is thought to be a bottleneck limiting further improvements to these batteries.

Nano-breakthrough: Solving the case of the herringbone crystal

May 13, 2013 7:54 am | News | Comments

Leading nanoscientists created beautiful, tiled patterns with flat nanocrystals, but they were left with a mystery: Why did some sets of crystals arrange themselves in an alternating, herringbone style? To find out, they turned to experts in computer simulation at the University of Michigan and the Massachusetts Institute of Technology.

Revising Darwin's sinking-island theory

May 13, 2013 7:41 am | by Genevieve Wanucha, Oceans at MIT | News | Comments

The three different formations of South Pacific coral-reef islands, fringing, barrier, and atoll, have long fascinated geologists. The question of how reefs develop into these shapes over evolutionary time produced an enduring conflict between two hypotheses, one from Charles Darwin and the other from Reginald Daly. But in a recently published paper, researchers use modern measurements and computer modeling to resolve this old conundrum.

Potential flu pandemic lurks

May 10, 2013 10:36 am | by Anne Trafton, MIT News Office | News | Comments

In the summer of 1968, a new strain of influenza appeared in Hong Kong. This strain, known as H3N2, spread around the globe and eventually killed an estimated 1 million people. A new study from Massachusetts Institute of Technology reveals that there are many strains of H3N2 circulating in birds and pigs that are genetically similar to the 1968 strain and have the potential to generate a pandemic if they leap to humans.

One order of steel; hold the greenhouse gases

May 8, 2013 2:52 pm | by David L. Chandler, MIT News Office | News | Comments

Anyone who has seen pictures of the giant, red-hot cauldrons in which steel is made—fed by vast amounts of carbon, and belching flame and smoke—would not be surprised to learn that steelmaking is one of the world’s leading industrial sources of greenhouse gases. But remarkably, a new process developed by Massachusetts Institute of Technology researchers could change all that.

Cleaner energy, warmer climate?

May 7, 2013 7:17 am | by Vicki Ekstrom, Joint Program on the Science and Policy of Global Change | News | Comments

The growing global demand for energy, combined with a need to reduce emissions and lessen the effects of climate change, has increased focus on cleaner energy sources. But what unintended consequences could these cleaner sources have on the changing climate? Researchers at Massachusetts Institute of Technology now have some answers to that question, using biofuels as a test case.

New research could let vehicles, robots collaborate with humans

May 3, 2013 7:39 am | by Helen Knight, MIT News correspondent | News | Comments

You get into your car and ask it to get you home in time for the start of the big game, stopping off at your favorite Chinese restaurant on the way for takeout. But the car informs you that the road past the Chinese restaurant is closed for repairs, and you will have to choose a different place. You select a nearby Korean restaurant from the options the car suggests. Autonomous devices could soon collaborate with humans in this way.

New theory could streamline operations management, cloud computing

May 1, 2013 11:22 am | by Larry Hardesty, MIT News Office | News | Comments

It’s often said that we live in an age of increased specialization. But in a series of recent papers, researchers have shown that, in a number of different contexts, a little versatility can go a long way. Their theoretical analyses could have implications for operations management, cloud computing—and possibly even health care delivery and manufacturing.

Unleashing oxygen

April 30, 2013 9:39 am | by David L. Chandler, MIT News Office | News | Comments

Fuel cells make electricity by combining hydrogen, or hydrocarbon fuels, with oxygen. But the most efficient types, called solid-oxide fuel cells, have drawbacks that have limited their usefulness—including operating temperatures above 700 C. Now, researchers have unraveled the properties of a promising alternative material structure for a key component of these devices.

Understanding the turbulence in plasmas

April 29, 2013 7:49 am | by David L. Chandler, MIT News Office | News | Comments

One simple phenomenon explains why practical, self-sustaining fusion reactions have proved difficult to achieve: Turbulence in the superhot, electrically charged gas, called plasma, that circulates inside a fusion reactor can cause the plasma to lose much of its heat. This prevents the plasma from reaching the temperatures needed to overcome the electrical repulsion between atomic nuclei. Until now.

A blueprint for reversible wrinkling in composite materials

April 24, 2013 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

Many natural composite materials have evolved to wrinkle in response to certain stimuli; and scientists say that understanding the mechanisms by which materials internally wrinkle could help in creating new, responsive materials. Now researchers have identified the mechanics involved in the wrinkling of thin interfacial layers within soft composite materials, and developed a model based on material properties and geometry.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading