Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology

The Lead

Device could make large biological circuits practical

November 25, 2014 7:59 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have made great progress in recent years in the design and creation of biological circuits: systems that, like electronic circuits, can take a number of different inputs and deliver a particular kind of output. But while individual components of such biological circuits can have precise and predictable responses, those outcomes become less predictable as more such elements are combined.

2-D quantum materials for nanoelectronics

November 21, 2014 9:10 am | by David L. Chandler, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology say they have carried out a theoretical...

Running the color gamut

November 19, 2014 8:01 am | by Rob Matheson, MIT News Office | News | Comments

If LCD TVs get more colorful in the next few years, it will probably be thanks to QD Vision, a...

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can...

View Sample

FREE Email Newsletter

Motion-induced quicksand

November 17, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

From a mechanical perspective, granular materials are stuck between a rock and a fluid place, with behavior resembling neither a solid nor a liquid. Think of sand through an hourglass: As grains funnel through, they appear to flow like water, but once deposited, they form a relatively stable mound, much like a solid.

Pulling together the early solar system

November 14, 2014 8:35 am | by Jennifer Chu, MIT News Office | News | Comments

While astronomers have observed the protoplanetary disk evolution throughout our galaxy, the mechanism by which planetary disks evolve at such a rapid rate has eluded scientists for decades. Now researchers have provided the first experimental evidence that our solar system’s protoplanetary disk was shaped by an intense magnetic field that drove a massive amount of gas into the sun within just a few million years.

Bacteria become genomic tape recorders

November 13, 2014 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology (MIT) engineers have transformed the genome of the bacterium E. coli into a long-term storage device for memory. They envision that this stable, erasable and easy-to-retrieve memory will be well suited for applications such as sensors for environmental and medical monitoring.

Advertisement

Atomic timekeeping, on the go

November 12, 2014 7:58 am | by Jennifer Chu, MIT News Office | News | Comments

What time is it? The answer, no matter what your initial reference may be, will always trace back to the atomic clock. The international standard for time is set by atomic clocks—room-sized apparatuses that keep time by measuring the natural vibration of atoms in a vacuum. The frequency of atomic vibrations determines the length of one second.

The missing piece of the climate puzzle

November 11, 2014 7:49 am | by Genevieve Wanucha | Program in Atmospheres Oceans and Climate | MIT | News | Comments

In classrooms and everyday conversation, explanations of global warming hinge on the greenhouse gas effect. In short, climate depends on the balance between two different kinds of radiation: The Earth absorbs incoming visible light from the sun, called “shortwave radiation,” and emits infrared light, or “longwave radiation,” into space.

New model predicts how traffic will flow

November 7, 2014 10:01 am | by David Chandler, MIT | News | Comments

A reliable way of predicting the flow of traffic could be a great convenience for commuters, as well as a significant energy-saver. Now a team of researchers from MIT, the Univ. of Notre Dame, and elsewhere has devised what they say is an effective and relatively simple formula for making such predictions.

Wind energy reaches greater heights

November 6, 2014 3:14 pm | by Rob Matheson, MIT | News | Comments

Wind turbines across the globe are being made taller to capture more energy from the stronger winds that blow at greater heights. But it’s not easy, or sometimes even economically feasible, to build taller towers, with shipping constraints on tower diameters and the expense involved in construction.

Diagnostic exhalations

November 6, 2014 9:40 am | by Larry Hardesty, MIT | News | Comments

Paramedics respond to a 911 call to find an elderly patient who’s having difficulty breathing. Anxious and disoriented, the patient has trouble remembering all the medications he’s taking, and with his shortness of breath, speaking is difficult. Is he suffering from acute emphysema or heart failure? Initiating the wrong treatment regimen will increase the patient’s risk of severe complications.

Advertisement

New way to make batteries safer

November 3, 2014 4:51 pm | by Anne Trafton, MIT News Office | News | Comments

Every year, nearly 4,000 children go to emergency rooms after swallowing button batteries, the flat, round batteries that power toys, hearing aids, calculators and many other devices. Ingesting these batteries has severe consequences, including burns that permanently damage the esophagus, tears in the digestive tract and, in some cases, even death.

Outside-the-box thinker

November 3, 2014 7:42 am | by Julia, Sklar, MIT News Correspondent | News | Comments

When an aspiring mechanical engineer on a budget wants a top-of-the-line guitar, what does he do? He makes it himself, of course. At age 13, Nathan Spielberg—now a Massachusetts Institute of Technology senior—began building his first guitar, a process that consumed his attention for eight hours a day, every weekend, for 3 1/2 years.

Raising cryptography’s standards

October 31, 2014 8:07 am | by Larry Hardesty, MIT News Office | News | Comments

Most modern cryptographic schemes rely on computational complexity for their security. In principle, they can be cracked, but that would take a prohibitively long time, even with enormous computational resources. There is, however, another notion of security—information-theoretic security—which means that even an adversary with unbounded computational power could extract no useful information from an encrypted message.

Harnessing error-prone chips

October 30, 2014 7:40 am | by Larry Hardesty, MIT News Office | News | Comments

As transistors get smaller, they also grow less reliable. Increasing their operating voltage can help, but that means a corresponding increase in power consumption. With information technology consuming a steadily growing fraction of the world’s energy supplies, some researchers and hardware manufacturers are exploring the possibility of simply letting chips botch the occasional computation.

Projecting a robot’s intentions

October 29, 2014 1:27 pm | by Jennifer Chu, MIT | Videos | Comments

Inside Massachusetts Institute of Technology’s Building 41, a small, Roomba-like robot is trying to decided where to go. As the robot considers its options, its “thoughts” are projected on the ground in the form of different colored dots and lines. This new visualization system, called “measurable virtual reality”, combines projectors with motion-capture technology and animation software to project a robot’s intentions in real time.

Advertisement

Shifting to higher octane

October 28, 2014 7:57 am | by Jennifer Chu, MIT News Office | News | Comments

If the majority of light-duty vehicles in the U.S. ran on higher-octane gasoline, the automotive industry as a whole would reduce its carbon dioxide emissions by 35 million tons per year, saving up to $6 billion in fuel costs, according to a new analysis by Massachusetts Institute of Technology researchers.

Microscopic “walkers” find their way across cell surfaces

October 23, 2014 8:14 am | by David L. Chandler, MIT News Office | News | Comments

Nature has developed a wide variety of methods for guiding particular cells, enzymes and molecules to specific structures inside the body: White blood cells can find their way to the site of an infection, while scar-forming cells migrate to the site of a wound. But finding ways of guiding artificial materials within the body has proven more difficult.

Getting the salt out

October 21, 2014 7:54 am | by David L. Chandler, MIT News Office | News | Comments

The boom in oil and gas produced through hydraulic fracturing, or fracking, is seen as a boon for meeting U.S. energy needs. But one byproduct of the process is millions of gallons of water that’s much saltier than seawater, after leaching salts from rocks deep below the surface. Now researchers at Massachusetts Institute of Technology and in Saudi Arabia say they have found an economical solution for removing the salt from this water.

Superconducting circuits, simplified

October 17, 2014 7:49 am | by Larry Hardesty, MIT News Office | News | Comments

Computer chips with superconducting circuits would be 50 to 100 times as energy efficient as today’s chips, an attractive trait given the increasing power consumption of the massive data centers that power Internet sites. Superconducting chips also promise greater processing power: Superconducting circuits that use so-called Josephson junctions have been clocked at 770 GHz, or 500 times the speed of the chip in the iPhone 6.

Big step in battling bladder disease

October 16, 2014 7:46 am | by Rob Matheson, MIT News Office | News | Comments

The millions of people worldwide who suffer from the painful bladder disease known as interstitial cystitis (IC) may soon have a better, long-term treatment option, thanks to a controlled-release, implantable device invented by Massachusetts Institute of Technology Prof. Michael Cima and other researchers. The device is a pretzel-shaped silicone tube that could be inserted into the bladder, slowly releasing lidocaine over two weeks.

Mars One (and done?)

October 14, 2014 7:43 am | by Jennifer Chu, MIT News Office | News | Comments

In 2012, the Mars One project, led by a Dutch nonprofit, announced plans to establish the first human colony on the Red Planet by 2025. The mission would initially send four astronauts on a one-way trip to Mars, where they would spend the rest of their lives building the first permanent human settlement.

Solid nanoparticles can deform like a liquid

October 13, 2014 8:24 am | by David L. Chandler, MIT News Office | News | Comments

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration. The research team behind the finding says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

Autism as a disorder of prediction

October 10, 2014 11:13 am | by Anne Trafton, MIT News Office | News | Comments

Autism is characterized by many different symptoms: difficulty interacting with others, repetitive behaviors and hypersensitivity to sound and other stimuli. Massachusetts Institute of Technology neuroscientists have put forth a new hypothesis that accounts for these behaviors and may provide a neurological foundation for many of the disparate features of the disorder.

Nanoparticles get a magnetic handle

October 9, 2014 10:50 am | by David L. Chandler, MIT News Office | Videos | Comments

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved by a team of researchers at Massachusetts Institute of Technology and several other institutions. The new technology could make it possible to track the position of the nanoparticles as they move within the body or inside a cell.

Researchers detect brightest pulsar ever recorded

October 9, 2014 8:09 am | by Jennifer Chu, MIT News Office | News | Comments

Astronomers have detected a pulsating dead star that appears to be burning with the energy of 10 million suns, making it the brightest pulsar ever detected. The pulsar—a rotating, magnetized neutron star—was found in the galaxy Messier 82 (M82), a relatively close galactic neighbor that’s 12 million light-years from Earth.

Getting metabolism right

October 8, 2014 7:59 am | by Larry Hardesty, MIT News Office | News | Comments

Metabolic networks are mathematical models of every possible sequence of chemical reactions available to an organ or organism, and they’re used to design microbes for manufacturing processes or to study disease. Based on both genetic analysis and empirical study, they can take years to assemble. Unfortunately, a new analytic tool suggests that many of those models may be wrong.

Unconventional photoconduction in an atomically thin semiconductor

October 7, 2014 3:36 pm | by David L. Chandler, MIT | News | Comments

It’s a well-known phenomenon in electronics: Shining light on a semiconductor, such as the silicon used in computer chips and solar cells, will make it more conductive. But now researchers have discovered that in a special semiconductor, light can have the opposite effect, making the material less conductive instead. This new mechanism of photoconduction could lead to next-generation excitonic devices.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading