Advertisement
Massachusetts Institute of Technology
Subscribe to Massachusetts Institute of Technology

The Lead

Why isn’t the universe as bright as it should be?

March 4, 2015 4:50 pm | by Jennifer Chu, MIT News Office | News | Comments

A handful of new stars are born each year in the Milky Way, while many more blink on across the universe. But astronomers have observed that galaxies should be churning out millions more stars, based on the amount of interstellar gas available. Now researchers have pieced together a theory describing how clusters of galaxies may regulate star formation.

Why seashells’ mineral forms differently in seawater

March 3, 2015 3:16 pm | by David L. Chandler, MIT News Office | News | Comments

For almost a century, scientists have been puzzled by a process that is crucial to much of the...

A clearer view of clouds

March 3, 2015 10:25 am | by Helen Knight, MIT News correspondent | News | Comments

Meteorologists sometimes struggle to accurately predict the weather here on Earth, but now we...

Nanodevice defeats drug resistance

March 3, 2015 7:30 am | by Anne Trafton, MIT News Office | News | Comments

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug...

View Sample

FREE Email Newsletter

Analysis shows ion slowdown in fuel cell material

March 2, 2015 11:01 am | by David L. Chandler, MIT News Office | News | Comments

Dislocations in oxides such as cerium dioxide, a solid electrolyte for fuel cells, turn out to have a property that is the opposite of what researchers had expected, according to a new analysis. Researchers had thought that a certain kind of strain would speed the transport of oxygen ions through the material, potentially leading to the much faster diffusion that is necessary in high-performance solid-oxide fuel cells.

A mollusk of a different stripe

February 26, 2015 10:59 am | by Jennifer Chu, MIT News Office | Videos | Comments

The blue-rayed limpet is a tiny mollusk that lives in kelp beds along the coasts of Norway, Iceland, the U.K., Portugal and the Canary Islands. These diminutive organisms might escape notice entirely, if not for a very conspicuous feature: bright blue dotted lines that run in parallel along the length of their translucent shells. Depending on the angle at which light hits, a limpet’s shell can flash brilliantly even in murky water.

A simple way to make and reconfigure complex emulsions

February 26, 2015 8:00 am | by Anne Trafton, MIT News Office | Videos | Comments

Massachusetts Institute of Technology researchers have devised a new way to make complex liquid mixtures, known as emulsions, that could have many applications in drug delivery, sensing, cleaning up pollutants and performing chemical reactions. Many drugs, vaccines, cosmetics and lotions are emulsions, in which tiny droplets of one liquid are suspended in another liquid.

Advertisement

Quick test for Ebola

February 24, 2015 7:36 am | by Anne Trafton, MIT News Office | News | Comments

When diagnosing a case of Ebola, time is of the essence. However, existing diagnostic tests take at least a day or two to yield results, preventing health care workers from quickly determining whether a patient needs immediate treatment and isolation. A new test could change that: The device, a simple paper strip similar to a pregnancy test, can rapidly diagnose Ebola, as well as other viral hemorrhagic fevers.

How brain waves guide memory formation

February 23, 2015 12:11 pm | by Anne Trafton, MIT News Office | News | Comments

Our brains generate a constant hum of activity: As neurons fire, they produce brain waves that oscillate at different frequencies. Long thought to be merely a byproduct of neuron activity, recent studies suggest that these waves may play a critical role in communication between different parts of the brain. A new study from Massachusetts Institute of Technology neuroscientists adds to that evidence.

Radio chip for the Internet of things

February 23, 2015 7:46 am | by Larry Hardesty, MIT News Office | News | Comments

At this year’s Consumer Electronics Show, the big theme was the “Internet of things”: the idea that everything in the human environment could be equipped with sensors and processors that can exchange data, helping with maintenance and the coordination of tasks. Realizing that vision, however, requires transmitters that are powerful enough to broadcast to devices dozens of yards away but energy-efficient enough to last for months.

Spacecraft catch a solar shockwave in the act

February 20, 2015 1:19 pm | by Jennifer Chu, MIT News Office | News | Comments

On Oct. 8, 2013, an explosion on the sun’s surface sent a supersonic blast wave of solar wind out into space. This shockwave tore past Mercury and Venus, blitzing by the moon before streaming toward Earth. The shockwave struck a massive blow to the Earth’s magnetic field, setting off a magnetized sound pulse around the planet.

Fibers made by transforming materials

February 20, 2015 8:26 am | by David L. Chandler, MIT News Office | News | Comments

Scientists have known how to draw thin fibers from bulk materials for decades. But a new approach to that old method, developed by researchers at Massachusetts Institute of Technology, could lead to a whole new way of making high-quality fiber-based electronic devices. The idea grew out of a long-term research effort to develop multifunctional fibers that incorporate different materials into a single long functional strand.

Advertisement

Epigenomics of Alzheimer’s disease progression

February 18, 2015 9:50 am | by Anne Trafton, MIT News Office | News | Comments

Our susceptibility to disease depends both on the genes that we inherit from our parents and on our lifetime experiences. These two components—nature and nurture—seem to affect very different processes in the context of Alzheimer's disease, according to a new study published in Nature.

Smarter multicore chips

February 18, 2015 7:33 am | by Larry Hardesty, MIT News Office | News | Comments

Computer chips’ clocks have stopped getting faster. To keep delivering performance improvements, chipmakers are instead giving chips more processing units, or cores, which can execute computations in parallel. But the ways in which a chip carves up computations can make a big difference to performance.

Engineered insulin could offer better diabetes control

February 10, 2015 8:41 am | by Anne Trafton, MIT News Office | News | Comments

For patients with diabetes, insulin is critical to maintaining good health and normal blood-sugar levels. However, it’s not an ideal solution because it can be difficult for patients to determine exactly how much insulin they need to prevent their blood sugar from swinging too high or too low. Massachusetts Institute of Technology engineers hope to improve treatment for diabetes patients with a new type of engineered insulin.

Evaluating strategies for HIV vaccination

February 6, 2015 11:21 am | by Anne Trafton, MIT News Office | News | Comments

Through an investigation of a fundamental process that guides the maturation of immune cells, researchers have revealed new insights into possible ways to vaccinate people to generate potent antibodies of the type that are predicted to offer protection against diverse strains of the highly mutable HIV. 

New source of cells for modeling malaria

February 6, 2015 9:40 am | by Anne Trafton, MIT News Office | News | Comments

In 2008, the World Health Organization announced a global effort to eradicate malaria, which kills about 800,000 people every year. As part of that goal, scientists are trying to develop new drugs that target the malaria parasite during the stage when it infects the human liver, which is crucial because some strains of malaria can lie dormant in the liver for several years before flaring up.

Advertisement

Diamonds could help bring proteins into focus

February 6, 2015 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Proteins are the building blocks of all living things, and they exist in virtually unlimited varieties, most of whose highly complex structures have not yet been determined. Those structures could be key to developing new drugs or to understanding basic biological processes. But figuring out the arrangement of atoms in these complicated, folded molecules usually requires getting them to form crystals large enough to be observed in detail.

How to prevent metal embrittlement

February 5, 2015 8:00 am | by David L. Chandler, MIT News Office | News | Comments

When a metal tube lines an oil well thousands of feet below the surface of the ocean, that metal had better be solid and reliable. Unfortunately, the environment in such deep wells is often rich in hydrogen, a gas that can penetrate high-tech alloys and make them brittle, making fractures and leaks more likely. Now researchers have figured which characteristics of a metal structure foster this embrittlement in the presence of hydrogen.

Splash down

February 4, 2015 8:40 am | by Jennifer Chu, MIT News Office | News | Comments

Farmers have long noted a correlation between rainstorms and disease outbreaks among plants. Fungal parasites known as “rust” can grow particularly rampant following rain events, eating away at the leaves of wheat and potentially depleting crop harvests. While historical weather records suggest rainfall may scatter rust and other pathogens throughout a plant population, the mechanism by which this occurs has not been explored, until now.

Waves in the deep

February 3, 2015 9:03 am | by Jennifer Chu, MIT News Office | News | Comments

Acoustic-gravity waves can be generated by underwater earthquakes, explosions and landslides, as well as by surface waves and meteorites. A single one of these waves can stretch tens or hundreds of kilometers, and travel at depths of hundreds or thousands of meters below the ocean surface, transferring energy from the upper surface to the seafloor, and across the oceans. Acoustic-gravity waves often precede a tsunami or rogue wave.

Wrinkle predictions

February 3, 2015 8:20 am | by Jennifer Chu, MIT News Office | News | Comments

As a grape slowly dries and shrivels, its surface creases, ultimately taking on the wrinkled form of a raisin. Similar patterns can be found on the surfaces of other dried materials, as well as in human fingerprints. While these patterns have long been observed in nature, and more recently in experiments, scientists have not been able to come up with a way to predict how such patterns arise in curved systems, such as microlenses.

Tasting light

January 30, 2015 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Human taste receptors are specialized to distinguish several distinct compounds: sugars taste sweet, salts taste salty, and acidic compounds taste sour. Now a new study from Massachusetts Institute of Technology finds that the worm Caenorhabditis elegans has taken its powers of detection a step further: The worm can taste hydrogen peroxide, triggering it to stop eating the potentially dangerous substance.

Parallelizing common algorithms

January 30, 2015 8:28 am | by Larry Hardesty, MIT News Office | News | Comments

Every undergraduate computer science major takes a course on data structures, which describes different ways of organizing data in a computer’s memory. Every data structure has its own advantages: Some are good for fast retrieval, some for efficient search, some for quick insertions and deletions and so on. Today, hardware manufacturers are making computer chips faster by giving them more cores, or processing units.

Qubits with staying power

January 29, 2015 3:41 pm | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain.

Researchers design tailored tissue adhesives

January 29, 2015 8:17 am | by Anne Trafton, MIT News Office | News | Comments

After undergoing surgery to remove diseased sections of the colon, up to 30% of patients experience leakage from their sutures, which can cause life-threatening complications. Many efforts are under way to create new tissue glues that can help seal surgical incisions and prevent such complications; now, a new study reveals that the effectiveness of such glues hinges on the state of the tissue in which they are being used.

New analysis explains collagen’s force

January 22, 2015 7:48 am | by David L. Chandler, MIT News Office | News | Comments

Research combining experimental work and detailed molecular simulations has revealed, for the first time, the complex role that water plays in collagen. The new analysis reveals an important mechanism that had never been observed before: Adding even small amounts of water to, or removing water from, collagen in tendons can generate surprisingly strong forces, as much as 300 times stronger than the forces generated by muscles.

Optimizing optimization algorithms

January 21, 2015 9:36 am | by Larry Hardesty, MIT News Office | News | Comments

Optimization algorithms are everywhere in engineering. Among other things, they’re used to evaluate design tradeoffs, to assess control systems and to find patterns in data. One way to solve a difficult optimization problem is to first reduce it to a related but much simpler problem, then gradually add complexity back in, solving each new problem in turn and using its solution as a guide to solving the next one.

Sequestration on shaky ground

January 21, 2015 7:46 am | by Jennifer Chu, MIT News Office | News | Comments

Carbon sequestration promises to address greenhouse gas emissions by capturing carbon dioxide from the atmosphere and injecting it deep below the Earth’s surface, where it would permanently solidify into rock. The U.S. Environmental Protection Agency estimates that current carbon sequestration technologies may eliminate up to 90% of carbon dioxide emissions from coal-fired power plants.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading