Advertisement
Duke University
Subscribe to Duke University

The Lead

Lab-grown muscle heals itself after animal implantation

April 2, 2014 12:07 pm | News | Comments

Biomedical engineers have grown living skeletal muscle that looks a lot like the real thing. It contracts powerfully and rapidly, integrates into mice quickly, and for the first time, demonstrates the ability to heal itself both inside the laboratory and inside an animal.

Lessons offered by emerging carbon trading markets

March 21, 2014 10:31 am | News | Comments

Although markets for trading carbon emission credits to reduce greenhouse gas emissions have...

Past HIV vaccine trials reveal new path to success

March 20, 2014 8:05 am | News | Comments

A multinational research team led by Duke Medicine scientists has identified a subclass of...

New lens design improves kidney stone treatment

March 18, 2014 10:53 am | by Ken Kingery, Duke Univ. | News | Comments

Duke Univ. engineers have devised a way to improve the efficiency of lithotripsy—the demolition...

View Sample

FREE Email Newsletter

Acoustic cloaking device hides objects from sound

March 12, 2014 7:35 am | by Ken Kingery, Duke Univ. | News | Comments

Using little more than a few perforated sheets of plastic and a staggering amount of number crunching, Duke Univ. engineers have demonstrated the world’s first 3-D acoustic cloak. The new device reroutes sound waves to create the impression that both the cloak and anything beneath it are not there.

Chemical signaling simulates exercise in cartilage cells

January 15, 2014 10:48 am | News | Comments

Cartilage is notoriously difficult to repair or grow, but researchers at Duke Medicine have taken a step toward understanding how to regenerate the connective tissue. By adding a chemical to cartilage cells, the chemical signals spurred new cartilage growth, mimicking the effects of physical activity. The findings point to an ion channel called TRPV4 as a potential target for new therapies to treat osteoarthritis or even regrow cartilage.

Tricky protein may help HIV vaccine development

January 13, 2014 3:48 pm | News | Comments

Duke Univ. scientists have taken aim at what may be an Achilles' heel of the HIV virus. Combining expertise in biochemistry, immunology and advanced computation, researchers at Duke have determined the structure of a key part of the HIV envelope protein, the gp41 membrane proximal external region (MPER), which previously eluded detailed structural description.

Advertisement

Superlens extends range of wireless power transfer

January 13, 2014 7:47 am | News | Comments

Inventor Nikola Tesla imagined the technology to transmit energy through thin air almost a century ago, but experimental attempts at the feat have so far resulted in cumbersome devices that only work over very small distances. But now, Duke Univ. researchers have demonstrated the feasibility of wireless power transfer using low-frequency magnetic fields over distances much larger than the size of the transmitter and receiver.

Acid mine drainage reduces radioactivity in fracking waste

January 9, 2014 11:34 am | News | Comments

Much of the naturally occurring radioactivity in fracking wastewater might be removed by blending it with another wastewater from acid mine drainage, according to a Duke Univ.-led study. Blending fracking wastewater with acid mine drainage also could help reduce the depletion of local freshwater resources by giving drillers a source of usable recycled water for the hydraulic fracturing process.

Supercomputers join search for “cheapium”

January 6, 2014 7:48 am | News | Comments

In the search for cheaper materials that mimic their purer, more expensive counterparts, researchers are abandoning hunches and intuition for theoretical models and pure computing power. In a new study, researchers from Duke Univ.’s Pratt School of Engineering used computational methods to identify dozens of platinum-group alloys that were previously unknown to science but could prove beneficial in a wide range of applications.

Engineers make strides toward artificial cartilage

December 13, 2013 1:50 pm | News | Comments

A Duke Univ. research team has developed a better recipe for synthetic replacement cartilage in joints. Combining two innovative technologies, the team found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Articular cartilage is the tissue on the ends of bones where they meet at joints in the body.

Copper promises cheaper, sturdier fuel cells

November 22, 2013 11:01 am | News | Comments

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. Chemists have commonly tried to use indium tin oxide (ITO) because it has transparency, but it also expensive and rare. Researchers at Duke Univ. has created something they hope can replace ITO: copper nanowires fused in a see-through film.

Advertisement

Artificial protein mimics a part of the HIV outer coat

October 23, 2013 8:35 am | News | Comments

A team of scientists has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to neutralize a wide variety of HIV strains. The finding provides a potential new strategy in vaccine development to elicit the broadly neutralizing antibodies considered essential for long-lasting protection from the ever-changing HIV virus.

Glowing neurons reveal networked link between brain, whiskers

October 16, 2013 11:04 am | News | Comments

Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a "labeled-lines" structure. But new research on mouse whiskers reveals a surprise: At the fine scale, the sensory system's wiring diagram doesn't have a set pattern.

Urine test could diagnose eye disease

October 9, 2013 11:54 am | News | Comments

You might not think to look to a urine test to diagnose an eye disease. But a new Duke Univ. study says it can link what is in a patient's urine to gene mutations that cause retinitis pigmentosa, or RP, an inherited, degenerative disease that results in severe vision impairment and often blindness.

Growing bacteria keep time, know their place

October 8, 2013 4:41 pm | News | Comments

Working with a synthetic gene circuit designed to coax bacteria to grow in a predictable ring pattern, Duke Univ. scientists have revealed an underappreciated contributor to natural pattern formation: time. A series of experiments published by the Duke team show that their engineered gene circuit functions as a timing mechanism, triggering a predictable ring growth pattern that adjusts to the size of its environment.

Radioactive shale gas contaminants found at wastewater discharge site

October 2, 2013 11:56 am | News | Comments

According to a recent study led by scientists at Duke Univ., elevated levels of radioactivity, salts and metals have been found in river water and sediments at a site where treated water from oil and gas operations is discharged into a western Pennsylvania creek.

Advertisement

China’s synthetic natural gas plants will have heavy environmental toll

September 26, 2013 9:01 am | News | Comments

Coal-powered synthetic natural gas plants being planned in China would produce seven times more greenhouse gas emissions than conventional natural gas plants, and use up to 100 times the water as shale gas production, according to a new study by Duke Univ. researchers. These environmental costs have been largely neglected in the drive to meet the nation’s growing energy needs, the researchers say.

Computer model to help design flexible touchscreens

September 4, 2013 7:33 am | News | Comments

Electronic devices with touchscreens rely on transparent conductors made of indium tin oxide, or ITO. But cost and the physical limitations of this material are limiting progress in developing flexible touchscreens. A research collaboration between the Univ. of Pennsylvania and Duke Univ. is exploring the use of nanowires to replace ITO, and are using simulation tools to determine how they might work.

Materials break, then remake, bonds to build strength

August 5, 2013 7:40 am | News | Comments

Microscopic tears in a new kind of man-made material may actually help the substance bulk up like a bodybuilder at the gym. A Duke Univ. team has shown how normally destructive mechanical forces can be channeled to bring about stronger materials. The material responses are like Silly Putty transforming into a solid as stiff as a pen cap or a runny liquid transforming into soft Jell-O.

Light, nanoprobes detect early signs of infection

June 21, 2013 8:00 am | News | Comments

Duke Univ. biomedical engineers and genome researchers have developed a proof-of-principle approach using light to detect infections before patients show symptoms. The approach was demonstrated in human samples, and researchers are now developing the technique for placement on a chip, which could provide fast, simple and reliable information about a patient. A diagnostic device based on this chip also could be made portable.

Video gamers really do see more

June 12, 2013 9:24 am | News | Comments

Hours spent at the video gaming console not only train a player's hands to work the buttons on the controller, they probably also train the brain to make better and faster use of visual input, according to Duke Univ. researchers.

New method for producing clean hydrogen

May 21, 2013 2:43 pm | News | Comments

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications. The Duke engineers, using a new catalytic approach, have shown in the laboratory that they can reduce carbon monoxide levels to nearly zero in the presence of hydrogen and the harmless byproducts of carbon dioxide and water.

Groundwater unaffected by shale gas production in Arkansas

May 15, 2013 11:46 am | News | Comments

Scientists sampling 127 shallow drinking water wells in areas overlying Fayetteville Shale gas production in north-central Arkansas found no evidence of groundwater contamination. The team of scientists at Duke University and the U.S. Geological Survey (USGS) analyzed the samples for major and trace elements and hydrocarbons, and used isotopic tracers to identify the sources of possible contaminants.

Engineers build living patch for damaged hearts

May 7, 2013 7:56 am | News | Comments

Duke University biomedical engineers have grown 3D human heart muscle that acts just like natural tissue. This advancement could be important in serving as a platform for testing new heart disease medicines. The “heart patch” grown in the laboratory from human cells overcomes two major obstacles facing cell-based therapies—the patch conducts electricity at about the same speed as natural heart cells and it “squeezes” appropriately.

Scientists build a living patch for damaged hearts

May 6, 2013 12:24 pm | News | Comments

Duke University biomedical engineers have grown three-dimensional human heart muscle that acts just like natural tissue. The "heart patch" grown in the laboratory from human cells overcomes two major obstacles facing cell-based therapies—the patch conducts electricity at about the same speed as natural heart cells and it "squeezes" appropriately.  

Do-it-yourself invisibility with 3D printing

May 6, 2013 11:51 am | News | Comments

Seven years ago, Duke University engineers demonstrated the first working invisibility cloak in complex laboratory experiments. Now it appears creating a simple cloak has become a lot simpler through 3D printing. Producing a cloak through this method is inexpensive and easy; and the small one the team made looks like a Frisbee disc made out of Swiss cheese.

Structure of cell signaling molecule suggests general on-off switch

April 22, 2013 8:07 am | News | Comments

A 3D image of a protein that serves as an on-off switch as it binds to receptors on the surface of a cell suggests there may be a sort of main power switch that could be tripped. These surface receptors are responsible for helping cells discern light, set the heart racing, or detect pain. The finding could help in the development of more effective drugs to switch on or off the cell receptors that regulate bodily functions.

Antibody evolution could guide HIV vaccine development

April 6, 2013 3:25 pm | News | Comments

Observing the evolution of a particular type of antibody in an infected HIV-1 patient has provided insights that will enable vaccination strategies that mimic the actual antibody development within the body. Spearheaded by Duke University, the multi-institution study included analysis from Los Alamos National Laboratory and used high-energy X-rays from the Advanced Photon Source at Argonne National Laboratory.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading