Advertisement
Cornell University
Subscribe to Cornell University

The Lead

Primordial galaxy bursts with starry births

November 12, 2014 4:09 pm | by Vasyl Kacapyr, Cornell Univ. | News | Comments

Peering deep into time with one of the world’s newest, most sophisticated telescopes, astronomers have found a galaxy—AzTEC-3—that gives birth annually to 500 times the number of suns as the Milky Way galaxy, according to a new Cornell Univ.-led study published in the Astrophysical Journal.

New molecule found in space connotes life origins

September 29, 2014 8:43 am | by Blaine Friedlander, Cornell Univ. | News | Comments

Hunting from a distance of 27,000 light years, astronomers have discovered an unusual carbon-...

Future phones to use blood, speech to monitor HIV, stress, nutrition

August 25, 2014 9:30 am | by Cornell Univ. | News | Comments

David Erickson, a professor at Cornell Univ., will receive a $3 million National Science...

The perfect atom sandwich requires an extra layer

August 5, 2014 11:21 am | by Anne Ju, Cornell Univ. | News | Comments

Like the perfect sandwich, a perfectly engineered...

View Sample

FREE Email Newsletter

The birth of topological spintronics

July 24, 2014 10:31 am | News | Comments

Research led by Penn State Univ. and Cornell Univ. physicists is studying "spintorque" in devices that combine a standard magnetic material with a new material known as a topological insulator. The new insulator, which is made of bismuth selenide and operates at room temperature, overcomes one of the key challenges to developing a spintronics technology based on spin-orbit coupling.

Drones could provide perfect lighting for photography

July 11, 2014 11:48 am | by Larry Hardesty, MIT | News | Comments

Lighting is crucial to the art of photography, but they are cumbersome and difficult to use properly. Researchers at Massachusetts Institute of Technology and Cornell Univ. aim to change that by providing photographers with squadrons of small, light-equipped autonomous robots that automatically assume the positions necessary to produce lighting effects specified through a simple, intuitive, camera-mounted interface.

Study cracks how the brain processes emotions

July 10, 2014 7:35 am | by Melissa Osgood, Cornell Univ. | News | Comments

Although feelings are personal and subjective, the human brain turns them into a standard code that objectively represents emotions across different senses, situations and even people. A Cornell Univ. team's findings provide insight into how the brain represents our innermost feelings and upend the long-held view that emotion is represented in the brain simply by activation in specialized regions for positive or negative feelings.

Advertisement

Fracking flowback could pollute groundwater with heavy metals

June 25, 2014 2:53 pm | by Melissa Osgood, Cornell Univ. | News | Comments

The chemical makeup of wastewater generated by “hydrofracking” could cause the release of tiny particles in soils that often strongly bind heavy metals and pollutants, exacerbating the environmental risks during accidental spills, Cornell Univ. researchers have found.

X-rays, computer simulations reveal crystal growth

May 15, 2014 9:08 am | by Anne Ju, Cornell Univ. | News | Comments

A research team that figured out how to coat an organic material as a thin film wanted a closer look at why their spreadable organic semiconductor grew like it did. So Cornell Univ. scientists used their high-energy synchrotron x-ray source to show how these organic molecules formed crystal lattices at the nanoscale. These high-speed movies could help advance the technology move from the laboratory to mass production.

“Exotic” material is like a switch when super thin

April 18, 2014 3:05 pm | by Anne Ju, Cornell Univ. | News | Comments

Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides. Researchers from Cornell Univ. and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

A few “problem wells” source of greenhouse gas

April 15, 2014 7:48 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

High levels of the greenhouse gas methane were found above shale gas wells at a production point not thought to be an important emissions source, according to a study jointly led by Purdue and Cornell universities. The findings could have implications for the evaluation of the environmental impacts from natural gas production.

Tiny tool measures heat at the nanoscale

February 27, 2014 11:10 am | News | Comments

How heat flows at the nanoscale can be very different than at larger scales, and researchers are working to understand how these features affect the transport of the fundamental units of heat, called phonons. At Cornell Univ. scientists have invented a phonon spectrometer whose measurements are 10 times sharper than standard methods. This boosted sensitivity has uncovered never-before-seen effects of phonon transport.

Advertisement

Nanoparticle networks' design enhanced by theory

February 26, 2014 5:22 pm | by Anne Ju, Cornell Univ. | News | Comments

Cornell Univ. researchers have recently led what is probably the most comprehensive study to date of block copolymer nanoparticle self-assembly processes. The work is important, because using polymers to self-assemble inorganic nanoparticles into porous structures could revolutionize electronics.

Sun powers complex cancer test for remote regions

February 21, 2014 8:19 am | by Blaine Friedlander, Cornell Univ. | News | Comments

From the sun, a solution: Cornell Univ. and Weill Cornell Medical College researchers have remodeled an energy-intensive medical test, designed to detect a deadly skin cancer related to HIV infections, to create a quick diagnostic assay perfect for remote regions of the world. By harnessing the sun’s power and employing a smartphone application, medical technicians may now handily administer reliable assays for Kaposi’s sarcoma.

New theory may revolutionize superconductors

December 6, 2013 8:21 am | by Bill Steele, Cornell University | News | Comments

High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically around atoms. Now two physicists propose that such behaviors, and superconductivity itself, can all be traced to a single starting point, and they explain why there are so many variations.

“Shaken, not stirred”: Oscillator drives electron spin

December 4, 2013 8:28 am | by Ann Ju, Cornell Univ. | News | Comments

A collaboration of physicists and engineers has found a new way to control electron spins not with a magnetic field but with a mechanical oscillator. This demonstration of electron spin resonance that’s “shaken, not stirred” showed that an oscillator can drive the transitions of electron spins within defects commonly found in the crystal lattice of a diamond.

Elegant geometric solution found for vexing 84-year-old math problem

November 18, 2013 1:37 pm | by Vasyl Kacapyr, Cornell Univ. | News | Comments

A famous math problem that has vexed mathematicians for decades has met an elegant solution by researchers at Cornell Univ. Graduate student Yash Lodha, working with Justin Moore, professor of mathematics, has described a geometric solution for the von Neumann-Day problem, first described by mathematician John von Neumann in 1929.

Advertisement

Gold-plated nanobits find, destroy cancer cells

October 16, 2013 8:56 am | by Blaine Friedlander, Cornell University | News | Comments

Comparable to nanoscale Navy Seals, Cornell Univ. scientists have merged tiny gold and iron oxide particles to work as a team, then added antibody guides to steer the team through the bloodstream toward colorectal cancer cells. And in a nanosecond, the alloyed allies then kill the bad guys, cancer cells, with absorbed infrared heat.

New micro water sensor can aid growers

October 11, 2013 8:44 am | by Krishna Ramanujan, Cornell University | News | Comments

Crop growers can benefit from water sensors for accurate, steady and numerous moisture readings. But current sensors are large, may cost thousands of dollars and often must be read manually. Now, Cornell Univ. researchers have developed a microfluidic water sensor within a fingertip-sized silicon chip that is a hundred times more sensitive than current devices.

Electric vest kneads away stress

September 5, 2013 8:13 am | by Olivia M. Hall | News | Comments

Anxiety? No problem. An electric vest can rub away your stress-filled day. Three Cornell Univ. students have developed a garment, embedded with piezoelectric cells and tiny motors, that gently massages the back and shoulders, mimicking a human touch.

Imperfect graphene renders “electrical highways”

July 11, 2013 6:37 pm | by Anne Ju, Cornell Univ. | News | Comments

Combining experiment and theory, Cornell Univ. researchers have shown that when grown in stacked layers, graphene produces some specific defects that influence its conductivity. Previously it was thought that when perfectly stacked in layers, graphene would be defect-free. Instead, it ripples. The finding could influence efforts to make graphene act like a semiconductor.

Physicists tease out twisted torques of DNA

June 28, 2013 12:56 pm | by Anne Ju, Cornell University | News | Comments

DNA sometimes twists itself into supercoils, an phenomenon caused by enzymes that travel along DNA’s helical groove and exert force and torque as they move. For the first time, these tiny torques have been measured using an instrument called an angular optical trap. Researchers at Cornell University have reported direct measurements of the torque generated by a motor protein as it traverses supercoiled DNA.

Genetic switches play big role in human evolution

June 12, 2013 8:45 am | by Krishna Ramanujan, Cornell Univ. | News | Comments

A Cornell Univ. study offers further proof that the divergence of humans from chimpanzees some 4 to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles in turning genes on and off. The study provides evidence for a 40-year-old hypothesis that regulation of genes must play an important role in evolution since there is little difference between humans and chimps in the proteins produced by genes.

Ultrasensitive polymer detects explosive devices

June 5, 2013 8:17 am | by Anne Ju, Cornell University | News | Comments

A chemical that’s often the key ingredient in improvised explosive devices can be quickly and safely detected in trace amounts by a new polymer created by a team of Cornell Univ. chemists. The polymer, which potentially could be used in low-cost, handheld explosive detectors and could supplement or replace bomb-sniffing dogs, was invented in the lab of William Dichtel, assistant professor of chemistry and chemical biology.

Researchers integrate origami and engineering

June 4, 2013 1:31 pm | News | Comments

The quintessential piece of origami might be a decorative paper crane, but in the hands of an interdisciplinary Univ. of Pennsylvania research team, it could lead to a drug-delivery device, an emergency shelter or even a space station. Collaborating with researchers at Cornell Univ., the Penn team will share in a $2 million, four-year grant from the NSF’s Div. of Emerging Frontiers in Research and Innovation.

Crystals melt when they're cooled

May 23, 2013 8:57 am | News | Comments

Growing thin films out of nanoparticles in ordered, crystalline sheets would be a boon for materials researchers, but the physics is tricky because particles of that size don’t form crystals the way individual atoms do. Using bigger particles as models, physicists have predicted some unusual properties of nanoparticle crystal growth.

Turn out the light: Switch determines cancer cell fate

May 3, 2013 8:10 am | by Anne Ju, Cornell University | News | Comments

Like picking a career or a movie, cells have to make decisions—and cancer results from cells making wrong decisions. At the cellular level, wrong decisions can be made right. A team has discovered that colon cancer stem cells, a particularly malignant population of cancer cells, are able to switch between the decision to proliferate or to remain constant—and this “switch” is controlled by a little-studied molecule called microRNA.

Ultrathin transistors spread like butter on toast

April 18, 2013 8:37 am | by Anne Ju, Cornell University | News | Comments

Like spreading a thin layer of butter on toast, Cornell University scientists have helped develop a novel process of spreading extremely thin organic transistors, and used synchrotron X-rays to watch how the films crystallize. The coating procedure, called solution shearing, is like the buttering of a slice of toast.

Microtransistor prototypes map the mind

April 12, 2013 9:42 am | by Blaine Friedlander, Cornell University | News | Comments

To make better mind maps, a group of French scientists—building on prototypes developed at the Cornell University NanoScale Science and Technology Facility—have produced the world’s first microscopic, organic transistors that can amplify and record signals from within the brain itself.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading