Advertisement
Academic Research Centers
Subscribe to Academic Research Centers

The Lead

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

Researchers find protein that fuels repair of treatment-resistant cancer cells

July 31, 2014 8:06 am | by Laura Bailey, Univ. of Michigan | News | Comments

Imagine you're fighting for your life but no matter how hard you hit, your opponent won't go...

Decades-old amber collection offers new views of an ancient world

July 31, 2014 7:52 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Scientists are searching through a massive collection of 20-million-year-old amber found in the...

Boosting neural pathway from gut to brain could play part in weight control

July 31, 2014 7:40 am | by Amy Patterson Neubert, Purdue Univ. | News | Comments

A Purdue Univ. study found an increase in sensory nerve fibers that send signals from the gut to...

View Sample

FREE Email Newsletter

Hummingbirds vs. helicopters: Stanford engineers compare flight dynamics

July 30, 2014 2:31 pm | by Bjorn Carey, Stanford News Service | Videos | Comments

More than 42 million years of natural selection have turned hummingbirds into some of the world's most energetically efficient flyers, particularly when it comes to hovering in place. Humans, however, are gaining ground quickly. A new study led by David Lentink, an assistant professor of mechanical engineering at Stanford, reveals that the spinning blades of micro-helicopters are about as efficient at hovering as the average hummingbird.

Dissolvable fabric loaded with medicine might offer protection against HIV

July 30, 2014 1:54 pm | by Michelle Ma, Univ. of Washington | News | Comments

Soon, protection from HIV infection could be as simple as inserting a medicated, disappearing fabric minutes before having sex. Univ. of Washington bioengineers have discovered a potentially faster way to deliver a topical drug that protects women from contracting HIV. Their method spins the drug into silk-like fibers that quickly dissolve when in contact with moisture, releasing high doses of the drug.

Huge waves measured for first time in Arctic Ocean

July 30, 2014 8:03 am | by Hannah Hickey, Univ. of Washington | News | Comments

As the climate warms and sea ice retreats, the North is changing. An ice-covered expanse now has a season of increasingly open water that is predicted to extend across the whole Arctic Ocean before the middle of this century. Storms thus have the potential to create Arctic swell. A Univ. of Washington researcher made the first study of waves in the middle of the Arctic Ocean, and detected house-sized waves during a September 2012 storm.

Advertisement

Brainwaves can predict audience reaction for TV programming

July 30, 2014 7:47 am | by Jason Maderer, Georgia Institute of Technology | News | Comments

Media and marketing experts have long sought a reliable method of forecasting responses from the general population to future products and messages. According to a study conducted at the City College of New York in partnership with Georgia Tech, it appears that the brain responses of just a few individuals are a remarkably strong predictor.

New brain-based marker of stress susceptibility

July 29, 2014 1:05 pm | by Karl Bates, Duke Univ. | News | Comments

Some people can handle stressful situations better than others, and it’s not all in their genes: Even identical twins show differences in how they respond. Researchers have identified a specific electrical pattern in the brains of genetically identical mice that predicts how well individual animals will fare in stressful situations. The findings may eventually help researchers prevent potential consequences of chronic stress.

A new way to make microstructured surfaces

July 29, 2014 12:49 pm | by David L. Chandler, MIT News Office | News | Comments

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel 3-D textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a variety of useful properties—including controllable mechanical stiffness and strength, or the ability to repel water in a certain direction.

Stem cell advance may increase efficiency of tissue regeneration

July 29, 2014 8:52 am | by Jeffrey Norris, UCSF | News | Comments

A new stem cell discovery might one day lead to a more streamlined process for obtaining stem cells, which in turn could be used in the development of replacement tissue for failing body parts, according to Univ. of California, San Francisco scientists who reported the findings in Cell.

Forced mutations doom HIV

July 29, 2014 8:16 am | by Anne Trafton, MIT News Office | News | Comments

Fifteen years ago, Massachusetts Institute of Technology professor John Essigmann and colleagues from the Univ. of Washington had a novel idea for an HIV drug. They thought if they could induce the virus to mutate uncontrollably, they could force it to weaken and eventually die out—a strategy that our immune system uses against many viruses.

Advertisement

New protein structure could help treat Alzheimer’s

July 28, 2014 2:16 pm | by Michelle Ma, Univ. of Washington | News | Comments

There is no cure for Alzheimer’s disease and other forms of dementia, but the research community is one step closer to finding treatment. Univ. of Washington bioengineers have a designed a peptide structure that can stop the harmful changes of the body’s normal proteins into a state that’s linked to widespread diseases such as Alzheimer’s, Parkinson’s, heart disease, Type 2 diabetes and Lou Gehrig’s disease.

Researchers discover cool-burning flames in space

July 28, 2014 2:04 pm | by Ioana Patringenaru, Jacobs School of Engineering | Videos | Comments

A team of international researchers has discovered a new type of cool burning flames that could lead to cleaner, more efficient engines for cars. The discovery was made during a series of experiments on the International Space Station by a team led by Forman Williams, a professor of mechanical and aerospace engineering at the Univ. of California, San Diego.

Climate change, air pollution will combine to curb food supplies

July 28, 2014 9:18 am | by David L. Chandler, MIT News Office | News | Comments

Many studies have shown the potential for global climate change to cut food supplies. But these studies have, for the most part, ignored the interactions between increasing temperature and air pollution. A new study shows that these interactions can be quite significant, suggesting that policymakers need to take both warming and air pollution into account in addressing food security.

Magnets may act as wireless cooling agents

July 28, 2014 7:40 am | by Jennifer Chu, MIT News Office | News | Comments

The magnets cluttering the face of your refrigerator may one day be used as cooling agents, according to a new theory. The theory describes the motion of magnons. In addition to magnetic moments, magnons also conduct heat; from their equations, the researchers found that when exposed to a magnetic field gradient, magnons may be driven to move from one end of a magnet to another, carrying heat with them and producing a cooling effect.

Collecting just the right data

July 25, 2014 7:56 am | by Larry Hardesty, MIT News Office | News | Comments

Much artificial intelligence research addresses the problem of making predictions based on large data sets. An obvious example is the recommendation engines at retail sites like Amazon and Netflix. But some types of data are harder to collect than online click histories. And in other applications there may just not be enough time to crunch all the available data.

Advertisement

Antioxidant biomaterial promotes healing

July 25, 2014 6:55 am | News | Comments

When a foreign material like a medical device or surgical implant is put inside the human body, the body usually reacts negatively. For the first time ever, researchers at Northwestern Univ. have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues.

Study shows how to power California with wind, water and sun

July 25, 2014 6:49 am | by Rob Jordan, Stanford Univ. | News | Comments

New Stanford Univ. research outlines the path to a possible future for California in which renewable energy creates a healthier environment, generates jobs and stabilizes energy prices. Among other metrics, the plan calculates the number of new devices and jobs created, land and ocean areas required, and policies needed for infrastructure changes.

The birth of topological spintronics

July 24, 2014 10:31 am | News | Comments

Research led by Penn State Univ. and Cornell Univ. physicists is studying "spintorque" in devices that combine a standard magnetic material with a new material known as a topological insulator. The new insulator, which is made of bismuth selenide and operates at room temperature, overcomes one of the key challenges to developing a spintronics technology based on spin-orbit coupling.

Discovery is key to metal wear in sliding parts

July 24, 2014 9:24 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have discovered a previously unknown mechanism for wear in metals: a swirling, fluid-like microscopic behavior in a solid piece of metal sliding over another. The findings could be used to improve the durability of metal parts in numerous applications.

“Comb-on-a-chip” powers new atomic clock design

July 24, 2014 7:52 am | News | Comments

Researchers from NIST and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale frequency comb, or a microcomb. The microcomb clock, featured in Optica, is the first demonstration of all-optical control of the microcomb, and its accurate conversion of optical frequencies to lower microwave frequencies.

Study: Forward osmosis desalination not energy efficient

July 24, 2014 7:37 am | by Alissa Mallinson | MIT Dept. of Mechanical Engineering | News | Comments

In a recent study published in the Journal of Membrane Science, a Massachusetts Institute of Technology team reported that, contrary to popular support, forward osmosis desalination of seawater is significantly less energy efficient, compared to reverse osmosis. In forward osmosis, water is drawn from the seawater into a concentrated salt solution, known as a draw solution.

Spinach could lead to alternative energy more powerful than Popeye

July 23, 2014 4:07 pm | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Spinach gave Popeye super strength, but it also holds the promise of a different power for a group of scientists: the ability to convert sunlight into a clean, efficient alternative fuel. Purdue Univ. physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.

First direct-diode laser bright enough to cut, weld metal

July 23, 2014 9:43 am | by Rob Matheson, MIT News Office | News | Comments

MIT Lincoln Laboratory spinout TeraDiode is commercializing a multi-kilowatt diode laser system that’s bright enough to cut and weld through a half-inch of steel, and at greater efficiencies than today’s industrial lasers. The new system is based on a wavelength beam-combining laser diode design that won an R&D 100 Award in 2012. It combines multiple beams into a single output ray, allowing for a power boost without efficiency loss.

RFID tags on honey bees reveal hive dynamics

July 23, 2014 7:56 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Scientists attached radio-frequency identification (RFID) tags to hundreds of individual honey bees and tracked them for several weeks. The effort yielded two discoveries: Some foraging bees are much busier than others; and if those busy bees disappear, others will take their place.

Building up bamboo

July 23, 2014 7:46 am | by Jennifer Chu, MIT News Office | Videos | Comments

Bamboo construction has traditionally been rather straightforward: Entire stalks are used to create latticed edifices, or woven in strips to form wall-sized screens. The effect can be stunning, and also practical in parts of the world where bamboo thrives. But there are limitations to building with bamboo.

Understanding graphene’s electrical properties on an atomic level

July 22, 2014 7:38 am | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

Graphene, a material that consists of a lattice of carbon atoms, one atom thick, is widely touted as being the most electrically conductive material ever studied. However, not all graphene is the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function.

More than glitter

July 21, 2014 10:35 am | by Anne Trafton, MIT News Office | Videos | Comments

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells. A new study from Massachusetts Institute of Technology materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons. 

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading