Advertisement
News
Advertisement

New material could be used for energy storage, conversion

Wed, 08/13/2014 - 11:50am
Anne M. Stark, Lawrence Livermore National Laboraotry

Lawrence Livermore National Laboratory researchers have made a material that is 10 times stronger and stiffer than traditional aerogels of the same density.

This ultra-low-density, ultra-high surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Ultra-low-density porous bulk materials have recently attracted renewed interest due to many promising applications.

Unlocking the full potential of these materials, however, requires realization of mechanically robust architectures with deterministic control over form, cell size, density and composition, which is difficult to achieve by traditional chemical synthesis methods, according to LLNL's Monika Biener, lead author of a paper appearing in Advanced Materials.

Biener and colleagues report on the synthesis of ultra-low-density, ultra-high surface area bulk materials with interconnected nanotubular morphology. The team achieved control over density (5 to 400 mg/cm3), pore size (30 um to 4 um) and composition by atomic layer deposition (ALD) using nanoporous gold as a tunable template.

"The materials are thermally stable and, by virtue of their narrow unimodal pore size distributions and their thin-walled, interconnected tubular architecture, about 10 times stronger and stiffer than traditional aerogels of the same density," Biener said.

The 3-D nanotubular network architecture developed by the team opens new opportunities in the fields of energy harvesting, catalysis, sensing and filtration by enabling mass transport through two independent pore systems separated by a nanometer-thick 3-D membrane.

Source: Lawrence Livermore National Laboratory

Advertisement

Share This Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading