Advertisement
News
Advertisement

Plant protein shape puzzle solved by molecular 3D model

Mon, 04/15/2013 - 4:33pm

The 3D molecular model of a plant cellulose synthase no longer remains elusive. Image: North Carolina State University Researchers from North Carolina State University believe they have solved a puzzle that has vexed science since plants first appeared on Earth.

In a paper published online in Proceedings of the National Academy of Sciences, the researchers provide the first 3D model of an enzyme that links a simple sugar, glucose, into long-chain cellulose, the basic building block within plant cell walls that gives plants structure. Cellulose is nature’s most abundant renewable biomaterial and an important resource for production of biofuels that represent alternatives to fossil fuels.

New understanding of the structure of the modeled plant enzyme, a cellulose synthase, may allow researchers to genetically engineer plants and trees for better cotton fibers or stronger wood, for example. From a materials engineering perspective, the findings can also be used to create beneficial nanocrystals with desired properties and functions.

“This structural model gives us insight into how cellulose synthesis works,” says Dr. Yaroslava Yingling, an NC State materials science and engineering professor who is the corresponding author on the study. “In the long term, it could result in new genetically modified plants that can be tweaked to induce specific engineered properties of cellulose.”

The study examined the structure of one cellulose synthase found in cotton fibers. The researchers compared their model with the structure of a similar enzyme in bacteria and found that the proteins were similarly folded in key regions required for cellulose synthesis. In the laboratory rat of the plant family—Arabidopsis thaliana, or mustard weed—the researchers identified potential causes for defective cellulose synthesis in mutant plants by making analogies to the modeled cotton cellulose synthase.

“Without the enzyme structure, you can’t make strategically designed, rational projections about how to make beneficial changes to the proteins—but now you can,” says Candace Haigler, an NC State crop scientist and plant biologist who co-authored the study. “In the future we could make cellulose easier to break down into biofuels while ensuring that the plants themselves are able to grow well.”

Source: North Carolina State University

Advertisement

Share This Story

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading