Advertisement
Technologies & Strategies That Enable R&D
Subscribe to R&D Magazine All

The Lead

Researchers design tailored tissue adhesives

January 29, 2015 | by Anne Trafton, MIT News Office | News | Comments

After undergoing surgery to remove diseased sections of the colon, up to 30% of patients experience leakage from their sutures, which can cause life-threatening complications. Many efforts are under way to create new tissue glues that can help seal surgical incisions and prevent such complications; now, a new study reveals that the effectiveness of such glues hinges on the state of the tissue in which they are being used.

TOPICS:
View Sample

FREE Email Newsletter

R&D Daily

Tasting light

January 30, 2015 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Human taste receptors are specialized to distinguish several distinct compounds: sugars taste sweet, salts taste salty, and acidic compounds taste sour. Now a new study from Massachusetts Institute of Technology finds that the worm Caenorhabditis elegans has taken its powers of detection a step further: The worm can taste hydrogen peroxide, triggering it to stop eating the potentially dangerous substance.

TOPICS:

Method allows for greater variation in band gap tenability

January 30, 2015 4:10 pm | by Amanda Morris, Northwestern Univ. | News | Comments

If you can’t find the ideal material, then design a new one. Northwestern Univ.’s James Rondinelli uses quantum mechanical calculations to predict and design the properties of new materials by working at the atom-level. His group’s latest achievement is the discovery of a novel way to control the electronic band gap in complex oxide materials without changing the material’s overall composition.

TOPICS:

Evidence mounts for quantum criticality theory

January 30, 2015 4:01 pm | by Mike Williams, Rice Univ. | News | Comments

A new study by a team of physicists at Rice Univ., Zhejiang Univ., Los Alamos National Laboratory, Florida State Univ. and the Max Planck Institute adds to the growing body of evidence supporting a theory that strange electronic behaviors arise from quantum fluctuations of strongly correlated electrons.

TOPICS:
Advertisement

Using a single molecule to create a new magnetic field sensor

January 30, 2015 9:16 am | by Univ. of Liverpool | News | Comments

Researchers at the Univ. of Liverpool and Univ. College London have shown a new way to use a single molecule as a magnetic field sensor. In a study, published in Nature Nanotechnology, the team shows how magnetism can manipulate the way electricity flows through a single molecule, a key step that could enable the development of magnetic field sensors for hard drives that are a tiny fraction of their present size.

TOPICS:

Building trustworthy big data algorithms

January 30, 2015 8:41 am | by Emily Ayshford, Northwestern Univ. | News | Comments

Much of our reams of data sit in large databases of unstructured text. Finding insights among emails, text documents and Websites is extremely difficult unless we can search, characterize and classify their text data in a meaningful way. One of the leading big data algorithms for finding related topics within unstructured text (an area called topic modeling) is latent Dirichlet allocation (LDA).

TOPICS:

Parallelizing common algorithms

January 30, 2015 8:28 am | by Larry Hardesty, MIT News Office | News | Comments

Every undergraduate computer science major takes a course on data structures, which describes different ways of organizing data in a computer’s memory. Every data structure has its own advantages: Some are good for fast retrieval, some for efficient search, some for quick insertions and deletions and so on. Today, hardware manufacturers are making computer chips faster by giving them more cores, or processing units.

TOPICS:

DNA nanoswitches reveal how life’s molecules connect

January 30, 2015 8:17 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

A complex interplay of molecular components governs most aspects of biological sciences: healthy organism development, disease progression and drug efficacy are all dependent on the way life's molecules interact in the body. Understanding these biomolecular interactions is critical for the discovery of new therapeutics and diagnostics to treat diseases, but currently requires scientists to have access to expensive laboratory equipment.

TOPICS:

CAT scan of nearby supernova remnant reveals frothy interior

January 30, 2015 8:00 am | by David A. Aguilar, Harvard-Smithsonian Center for Astrophysics | News | Comments

Cassiopeia A, or Cas A, is one of the most well-studied supernova remnants in our galaxy. But it still holds major surprises. Harvard-Smithsonian and Dartmouth College astronomers have generated a new 3-D map of its interior using the astronomical equivalent of a CAT scan. They found that the Cas A supernova remnant is composed of a collection of about a half dozen massive cavities—or "bubbles."

TOPICS:
Advertisement

Light-converting materials point to cheaper, more efficient solar power, LEDs

January 30, 2015 7:50 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | News | Comments

Engineers are shining new light on an emerging family of solar-absorbing materials that could clear the way for cheaper and more efficient solar panels and LEDs. The materials, called perovskites, are particularly good at absorbing visible light, but had never been studied in their purest form: as perfect single crystals.

TOPICS:

Obama proposes "precision medicine" to end one-size-fits-all

January 30, 2015 6:18 am | by Lauran Neergaard, AP Medical Writer, Associated Press | News | Comments

President Barack Obama is calling for an investment to move away from one-size-fits-all-medicine, toward an approach that tailors treatment to your genes. The White House said Friday that Obama will ask Congress for $215 million for what he's calling a precision medicine initiative. The ambitious goal: Scientists will assemble databases of about a million volunteers to study their genetics to learn how to individualize care.

TOPICS:

Hydrogen sulfide could help lower blood pressure

January 29, 2015 4:30 pm | by Univ. of Exter Medical School | News | Comments

A gas that gives rotten eggs their distinctive odor could one day form the basis of new cardiovascular therapies. Research has indicated that a new compound, called AP39, which generates minute quantities of the gas hydrogen sulfide inside cells, could be beneficial in cases of high blood pressure and diseases of the blood vessels that occur with aging and diabetes.

TOPICS:

New clues about a brain protein with high affinity for valium

January 29, 2015 4:18 pm | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Valium, one of the best known antianxiety drugs, produces its calming effects by binding with a particular protein in the brain. But the drug has an almost equally strong affinity for a completely different protein. Understanding this secondary interaction might offer clues about Valium's side effects and point the way to more effective drugs.

TOPICS:

Genetically engineered antibodies show enhanced HIV-fighting abilities

January 29, 2015 4:06 pm | by Kimm Fesenmaier, Caltech | News | Comments

Capitalizing on a new insight into HIV's strategy for evading antibodies, Caltech researchers have developed antibody-based molecules that are more than 100 times better than our bodies' own defenses at binding to and neutralizing HIV, when tested in vitro. The work suggests a novel approach that could be used to engineer more effective HIV-fighting drugs.

TOPICS:

Eyeglasses that turn into sunglasses

January 29, 2015 3:52 pm | by American Chemical Society | News | Comments

Imagine eyeglasses that can go quickly from clear to shaded and back again when you want them to, rather than passively in response to changes in light. Scientists report a major step toward that goal, which could benefit pilots, security guards and others who need such control, in ACS Applied Materials & Interfaces.

TOPICS:

Qubits with staying power

January 29, 2015 3:41 pm | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain.

TOPICS:

Pages

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading